02 Editorial
Suzanne Guerin and Ruth Geraghty

Research Articles

07 Leadership, sustainability and extending the learning from the Healthy Schools programme to other national and international contexts
Catherine Comiskey, Prakashini Banka, John Hyland and Pauline Hyland

15 Effect of the Preparing for Life programme on trajectories of behaviour, cognition and health
Sylvana M. Côté, Massimiliano Orri, Richard E. Tremblay and Orla Doyle

33 Gender differences in cognitive development and school readiness: Findings from a randomised controlled trial of children from communities of socio-economic disadvantage in Ireland
Gráinne Kent and Vasiliki Pitsia

43 Understanding and addressing the concurrent needs of families living in the Colin Area: A secondary analysis of the Colin Early Intervention Community report card data
Colm Walsh and Gavin Davidson

51 Meaningful participation of young people in secondary data analysis: Lessons from the field
Leonor Rodriguez

Research Summaries

59 How do we compare? Locating findings from the Tallaght West Child Development Early Years Initiative within a wider international context
Nóirín Hayes and Judy Irwin

63 Investigating associations between maternal well-being and infant dietary intake in a low-income setting
Sarah Buggy, Kate O’Neill, Patricia M. Kearney and Karen Matvienko-Sikar

69 Does early home environment influence basic numeracy skills? The Preparing for Life study
Victoria Simms, Abbie Cahoon, Aideen McParland, Nicola Doherty and Camilla Gilmore

73 Children’s own priorities for their school readiness: More than just a checklist of skills and behaviours
Christine O’Farrelly, Alibhe Booth, Mimi Tatlow-Golden and Beth Barker

79 The experiences and approaches of mentors in the Big Brothers Big Sisters programme: Lessons for research, policy and practice
Bernadine Brady and Charlotte Silke

83 Population Triple P in Ireland: Does it work?
Orla Doyle, Mary Hegarty and Conor Owens
Editorial

Suzanne Guerin and Ruth Geraghty

We are delighted to present this special edition of the Children's Research Digest which reports on new research that has been generated by the Prevention and Early Intervention Research Initiative (PEI-RI) at the Children's Research Network. This archiving project was funded by the Atlantic Philanthropies (AP) during 2015-18 and the publication of this special edition of the Digest marks the conclusion of the PEI-RI project at the Network. The PEI-RI had two central aims; firstly, to archive data from the evaluation of Prevention and Early Intervention services that were funded under AP’s Prevention and Early Intervention Initiative (PEI-RI; 2014-16) and secondly, to support new analyses of this data through a series of research grants. During 2017-18 the Network awarded grants to sixteen projects, and the papers presented here capture just some of the insights generated by a sample of these projects. The papers include both articles and research summaries, with several of the pieces reporting work in progress towards a variety of peer reviewed dissemination activities. In this way, the papers capture the dynamic nature of the research that has been funded by this pioneering grant scheme.

Exactly one year ago, Jane Gray and Maja Haals Brosnan introduced the 2017 special edition of the Digest which focused on the process of archiving the PEI data in the two public data archives in Ireland; the Irish Social Science Data Archive1 and the Irish Qualitative Data Archive2. Gray and Haals Brosnan (2017) highlighted recent and relevant developments that promote open access to data, including the FAIR data guidelines, the promotion of open access data in the EU Framework Programme for Research and Innovation, Horizon 2020 and the development of the Health Research Board (HRB) Open Research Policy. This theme was echoed in a subsequent chapter that was co-authored by our two guest editors, Jane Gray and Suzanne Guerin, on archiving data within the applied research context (Murphy, O’Carroll, Guerin and Gray, 2018). The book was produced by the Research Evaluation Policy and Practice (REPP) project group and captured the accounts, and more importantly the lessons learned, of researchers and practitioners who were actively involved in prevention and early intervention programmes that received funding from AP and the Department of Children and Youth Affairs during the period of the PEII investment. This chapter notes the many benefits of archiving, including the availability of data for further validation of findings, the reduction of costs and of burden on participants, and the promotion of data reuse in the future. It is interesting to note that, less than a year later, researchers in Ireland are considering the implications of both the General Data Protection Regulation (2016) and the Health Research Regulations (2018) for the archiving and reuse of data. While there may be initial challenges in adapting to the requirements of these recent changes, ultimately researchers will incorporate them into their practices.

One reason that the archiving and the reuse of research data should, and indeed will continue to be promoted and practiced by researchers, within the boundaries of new legislation, is that reuse and secondary analysis is essential and ethical. The contribution of participants and the knowledge generated from those contributions is maximised through reconsideration of the data far beyond the limited time frame of the original research project. The value of being able to return to existing data and extend its utility is clear from the papers presented in this issue. For example, Comiskey, Banka, Hyland and Hyland extend the learning from the Healthy Schools Project in Dublin to wider international contexts, while Rodriguez builds on the lessons learned from the Big Brothers Big Sisters evaluation to highlight the positive impact of meaningful participation by young people in secondary data analysis and dissemination.

Several projects that are reported in this issue involved the analysis of research data that were accessed via the archives, including, for example, the quantitative data from the Preparing for Life dataset (see for example, Buggy, O’Neill, Kearney and Matvienko-Sikar; Simms et al.) which was archived as part of the PEI-RI in 2017. Other projects that are reported here analysed data that have limited accessibility due to ethical constraints in the design of the project, but are suitable for further investigation and secondary analysis (see for example, Brady and Silke; Doyle, Hegarty and Owens). The evaluations from these data are drawn were developed, in some cases, over long periods of time and it is not surprising that questions about the ethics of data archiving simultaneously emerged, as the value of the PEI data became apparent. Since its commencement in 2018, the PEI-RI project has contributed to a conversation amongst the Irish research community on ethical requirements for open science within the social and health sciences, especially around participant consent. The experience from the PEI project has taught us that we must consider from the outset of each new research project the steps that can be taken to ensure data can be retained, and where possible, made available for further analysis. With the developments in data protection and research governance noted above, it is even more important that researchers are prepared and positioned to consider the ethical arguments for archiving and, as highlighted by this special edition, the significant benefits of secondary analysis of archived datasets.

Another point to note regarding the papers included in this special edition is the breadth of experience and expertise represented in and supported by the PEI-RI research grants. The funding had an explicit focus on capacity building and sought to support early career researchers to work collaboratively with senior mentors. The aim was to increase the capacity for high quality evaluation research, and indeed secondary analysis in prevention and early intervention research, by supporting the development of early-career and academic researchers. Grants enabled master’s and doctorate students to work directly with data from the PEI evaluations, for example, one grant enabled a student to analyse the PFL data for the award of a master’s degree in Public Health (Buggy et al.). The involvement of early career researchers in almost all of the funded projects demonstrates the educational contribution of the PEI-RI grant scheme, and of secondary analysis more generally. The grants were not limited to early career researchers and three awards were made under the Senior Scholars scheme to support more established academics to reengage with existing datasets and address novel questions (see for example Brady and Silke; Comiskey et al; Hayes and Irwin).

A final point to note, before we move on to the papers, relates to the diversity of dissemination activities by the research teams included in this edition. The broad topic of knowledge transfer and exchange stresses the need for engagement in a diverse range of activities that promote the sharing of research and maximise the potential for learning to impact on practice (Hayes and Duignan, 2018). The preparation of this special edition reflects one form of dissemination however, it is important to note that these papers are one of a range of dissemination activities by these authors. The research reported here has been presented internationally at academic and practitioner conferences, across a range of disciplinary areas and has resulted in a wide array of outputs beyond traditional published reports, including online videos (Rodriguez), methodological workshops (Hanna and O’Hare, not included in this edition), and guidance leaflets for parents/teachers (Simms et al.). For researchers to promote the effective implementation of research in practice it is essential that we develop the skills required to communicate key messages from our work via a diverse range of activities that engage multiple audiences, through meaningful and effective communication channels.

We would like to thank all of the authors for their contributions to this issue. Special thanks are also due to those who helped with reviewing and proof reading this edition, and to AAD for providing the design and layout.
Guest editor
Dr Suzanne Guerin, University College Dublin

Editor
Ruth Geraghty, Children's Research Network

References

Leadership, sustainability and extending the learning from the Healthy Schools programme to other national and international contexts

Catherine Comiskey, Prakashini Banka, John Hyland and Pauline Hyland
Introduction

A Health Promoting School is defined by the World Health Organisation (WHO, 1998, p. 2) as a school that constantly strengthens its capacity as a healthy setting for living, learning and working. It focuses on fostering learning in health, engaging all school stakeholders, from pupils to education officials; it strives to create a healthy, sustainable environment; and it implements relevant policies and practices and takes a lead within its setting on striving to improve the health of its community members (ibid, p. 3). For over a decade, the Healthy Schools programme has been evaluated internationally. In Hong Kong, a study by Lee, Cheng, Fung and St. Ledge (2006) demonstrated that the programme improved the health of young people. In their study, data were collected from nine schools, representing 982 primary and 1221 secondary school children who received The Health Promoting School programme for two years. The study found that children's school performance increased post-intervention and this increase was significant among secondary school children (p<.001). Significant improvement was also reported on children's dietary patterns among both primary and secondary school children post-intervention. Antisocial behaviours, mental health and smoking were among other outcomes that improved for both primary and secondary school children. However, alcohol consumption increased for both primary and secondary school children post-intervention. Within Ireland, the WHO Healthy Schools programme was originally implemented and evaluated in an urban disadvantaged region of Dublin from 2008 to 2012 (Comiskey et al., 2012). Comiskey et al. (2012) examined how the programme was implemented in schools and assessed the baseline results from the primary school children's physical and mental health status. The key findings from the baseline data reported no significant changes in children's overall health and well-being for both the intervention and comparison schools. However, a later report (Comiskey et al., 2015) highlighted the challenges of school-based, local implementation and the impact of this design on evaluation results. For example, schools felt they were not equipped to identify the health needs of the children. They also reported concerns of being held responsible if the programme did not work and expressed concerns with the expectation that they would lead the programme implementation. These challenges negatively impacted on the overall programme and as a result no positive impacts were found on the children's overall health outcomes by the end of evaluation. Hyland, Hyland, Banka and Comiskey (under peer review) also found that children experienced high levels of victimisation in schools; and Banka, Hyland Hyland and Comiskey (under peer review) found relationships between depression and children's body mass index.

The aim of the present study was to explore these challenges in more depth from an international perspective and to share the findings with both practitioners and academics. The objectives were to compare victimisation, depression and body mass index among school children internationally and to share the findings from an Irish context with a view to sustaining and extending this learning internationally. This research was supported by the Children's Research Network Prevention and Early Intervention Research Initiative Senior Scholars Grant Scheme in 2018. Within the first objective, seven work packages (WP) were designed, as described in Table 1.

Table 1: The seven work packages

<table>
<thead>
<tr>
<th>WP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP1</td>
<td>Measure and describe health risks and victimisation of pre-teen children in Irish school settings – Trinity College Dublin (TCD) team to lead.</td>
</tr>
<tr>
<td>WP2</td>
<td>Measure and describe health risks and victimisation of similar aged children in another EU setting (The Netherlands) - Toegepast Natuurwetenschappelijk Onderzoek (TNO) team to lead on data extraction and analysis, with support from the TCD team.</td>
</tr>
<tr>
<td>WP3</td>
<td>Measure and describe health risks and victimisation of similar aged children in a wider, international, high income country setting (data from English children) - University of Technology Sydney (UTS) team to lead on data extraction and analysis to be supported by the TCD team.</td>
</tr>
<tr>
<td>WP4</td>
<td>Measure (if possible) and describe health risks and victimisation of similar aged children in a low to middle income setting (South Africa) - University of Western Cape (UWC) team to lead on data extraction, and analysis to be supported by the TCD team if required.</td>
</tr>
<tr>
<td>WP5</td>
<td>Provide a comparative analysis across the range of international settings - TCD team to lead on analysis with support from all other teams.</td>
</tr>
<tr>
<td>WP6</td>
<td>Provide a meta-analysis of outcomes across the settings if it is possible to obtain common outcome data across the country settings - TCD team to lead supported by all other teams.</td>
</tr>
<tr>
<td>WP7</td>
<td>Share the learning across the settings in terms of implications for school and national educational and health policies - each team to lead within country domain.</td>
</tr>
</tbody>
</table>

Method

Building on existing and new collaborations, the TNO, UTS and UWC4; teams were invited to participate in a shared analysis of children's health and victimisation data. Regular Skype meetings were held; details and descriptions of the four international data sources were discussed; and details of the variables within their measurement instruments and choice of year(s) of data were decided. Permission to access the data was obtained and protocols for data extraction were drawn up.

The data from the urban disadvantaged region of Dublin were gathered among 449 children at baseline (when children were aged between eight to twelve years), representing fifty-five per cent of the estimated sample frames. Following this, data were collected from 428 children in Year 1, and 315 children in Year 2. Children completed the age appropriate self-report psychometric surveys to measure depressive symptoms and Health Related Quality of Life (HRQoL). Depressive symptoms were measured using the Children’s Depression Inventory-Short (CDI-S; Kovacs, 1985). HRQoL was measured using KIDSCREEN-27 (KIDSCREEN Group Europe, 2008) which consists of twenty-seven items.

Demographic information was also gathered, such as gender and age. Scores were converted to age appropriate equivalents and were subsequently inputted into the necessary analyses. Children's body mass index (BMI) was calculated using gender and age specific cut-off points based on the International Obesity Task Force (IOTF) for children aged 8-12 years (Cole et al., 2000).
to age and gender specific z scores using AnthroPlus software to categorise weight using the WHO (2007) thresholds.

The dataset from UTS included data from 5325 young people aged eleven, thirteen and fifteen years (fifty-two per cent boys) who participated in the Health Behaviour in School-aged Children (HBSC; www.hbsc.org) study for England. Data from fifteen-year-olds were omitted, as the Irish data included children aged less than thirteen years. Only data from an urban disadvantaged population were extracted for comparison with the current study. The UTS England study used the Health Behaviour in School-aged Children (HBSC) questionnaire which collects data every four years on eleven, thirteen and fifteen-year-old children’s health and well-being, health behaviours and social environments (Roberts et al., 2009). Data from TNO were sourced from the Local Health Services in Leiden and from the bullying intervention project at TNO. Currently, overall health status and demographic data are in the process of being extracted for urban disadvantaged children aged between eight and twelve years of age. Descriptive and correlational analysis, with mediation and moderation modelling will be conducted on this data.

Preliminary results

Findings on children

As of September 2018, data extraction was ongoing. To compare with the Irish participants from the Healthy Schools evaluation, the UK/UTS and TNO teams will extract data by matching the profiles of the Irish children who were recruited through schools designated as urban and disadvantaged. Preliminary analysis of the Irish data on victimisation by Hyland et al. (under peer review) across three waves (baseline, Year 1 and Year 2) found that, relative to findings published recently on the baseline data of the Healthy Schools programme (Hyland, Hyland and Comiskey, 2017), the frequency of victimisation has decreased in Year 2 compared to earlier waves. This was observed for both single-item and multiple item measures of victimisation behaviours and recognised by the whole school community, and the readiness of a school for local implementation (Comiskey et al., 2015). The importance of leadership, addressing a need and organisational readiness has been identified in Year 2, with no differences observed in Year 1.

In terms of childhood depression, Banka et al. (under peer review) found, using mediation models incorporating age, and controlling for gender, that health status did not change for these urban disadvantaged children. Children with initially poor or good health maintained their health status over the three-year period. In addition, increases in BMI and decreases in depressive symptoms were also observed.

Findings for practice

Key findings in terms of leading and sustaining a healthy school include: the importance of good leadership within a school; the importance of identifying a local school-based need that was endorsed and recognised by the whole school community, and the readiness of a school for local implementation (Comiskey et al., 2015). The importance of leadership, addressing a need and organisational readiness has been addressed by Fixsen, Naoom, Blase, Friedman and Wallace (2005) in their synthesis of the implementation science literature. Burke, Morris and McGarrigle (2012) have presented a clear framework to guide implementation across time and have provided a list of enablers and barriers organisations need to be aware of. Examples of enablers, from the framework designed by Burke et al. (2012) include leadership, resources, implementation teams, buy-in from stakeholders, and communication. Examples of barriers include vested interest, resistance to change, and external environment. Evidence of a desire to participate but a lack of current leadership, and hence readiness, was found within the UWC. Staff originally involved in their Healthy Schools project had retired and other staff were not directly involved in the original work with the teachers. This also demonstrated a need for not only leadership but distributable leadership within schools. ‘Distributable leadership’ recognises that the ‘collective interactions among leaders, followers, and their situation are paramount. The situation of leadership isn’t just the context within which leadership practice unfolds; it is a defining element of leadership practice’ (Spillane, 2006, p. 4).

Conclusions and implications for future research

While the UWC were not able to participate on this occasion, the learning from this international initiative has potential for African, EU and other countries. Banka, Comiskey and colleagues have initiated a pilot Healthy Schools project in Mauritius. Currently, the team from TCD and the University of Mauritius are applying for funding from the Mauritius Tertiary Education Commission to assess the physical and mental health outcomes among disadvantaged children in Mauritius. The data will be compared to the data from the Healthy Schools programme in Ireland. Furthermore, the work with local healthy schools in Ireland was instrumental in providing background experience for a further project by Galligan and Comiskey (2017) on young people and alcohol use and distribution in the region, which was supported by the Tallaght Local Drugs and Alcohol Task Force. This in turn has led to an international collaboration with the University of Valencia on the study of binge drinking by young people and associated hospital attendances and health consequences in the region. The sharing of learning from the original Healthy Schools programme has extended beyond the original project and practice and has contributed not only to the region, but also to international practice.

References

Author information

Professor Catherine Comiskey is a professor in healthcare statistics, the former head of the School of Nursing and Midwifery, Trinity College Dublin (2014-2017), founder and inaugural director of the Trinity Centre for Practice and Healthcare Innovation (2012-2014) and former director of research (2008-2012). Catherine holds a BA (Mod) degree in mathematics and philosophy from Trinity College, Dublin University (1989), a masters in biostatistics and epidemiology. She is a member of the British Psychological Society, the Psychological Society of Ireland. Her research interests include a strong emphasis on research methods and analysis, quantitative and qualitative analysis and project support. Her research interests include a strong emphasis on mental health, development of anti-bullying prevention and intervention strategies, issues concerned with teacher training and special education needs, aggression, and consequences of health-related illnesses.

Dr Pauline Hyland is a lecturer in Psychology at Dublin Business School for almost ten years, and has been researching in the area of bully/victim problems throughout this time. She is a graduate member of the British Psychological Society and the Psychological Society of Ireland. Her PhD focused on some of the predictive factors and outcomes of involvement in traditional and cyberbullying, specifically the ‘dark triad’ of personality, mental health, social support, self-efficacy and coping. Her teaching centres on research methods and analysis, and qualitative and qualitative analysis and project support. Her research interests include a strong emphasis on mental health, development of anti-bullying prevention and intervention strategies, issues concerned with teacher training and special education needs, aggression, and consequences of health-related illnesses.

Dr John Hyland is a lecturer in psychology at Dublin Business School (DBS). His teaching centres around behaviour science, research methodology, data analysis and psychological ethics. He also currently sits as a member of the DBS Research Ethics Committee. He is a current visiting research fellow in the School of Nursing and Midwifery at TCD, where he is involved in projects such as the Healthy Schools Programme. John also spent six years as a committee member of the Northern Ireland Branch of the British Psychological Society. His specific research interests focus on the experimental analysis of complex behaviour, verbal behaviour, aggression and victimisation, and mental health promotion and intervention.

Dr John Hyland is a lecturer in psychology at Dublin Business School (DBS). His teaching centres around behaviour science, research methodology, data analysis and psychological ethics. He also currently sits as a member of the DBS Research Ethics Committee. He is a current visiting research fellow in the School of Nursing and Midwifery at TCD, where he is involved in projects such as the Healthy Schools Programme. John also spent six years as a committee member of the Northern Ireland Branch of the British Psychological Society. His specific research interests focus on the experimental analysis of complex behaviour, verbal behaviour, aggression and victimisation, and mental health promotion and intervention.
Effect of the Preparing for Life programme on trajectories of behaviour, cognition and health

Sylvana M. Côté, Massimiliano Orri, Richard E. Tremblay and Orla Doyle
Introduction

The origins of adult mental and physical health problems can be traced to risk factors before birth and during early childhood (Barker, 1990; Goodman, Joyce and Smith, 2011; O’Donnell and Meaney, 2016). One of the most consistently identified risk factors for poor developmental outcomes is low family socio-economic status (SES) (Cobb-Clark, Salamanca and Zhu, 2016; Cunha, 2015). Early intervention programmes supporting low-SES families are recognised as a viable strategy for preventing long-term social and health problems (Heckman and Mosso, 2014). Typically, the mean impact of the intervention on all children is tested, thus ignoring one important source of variation: population heterogeneity (Nagin, 2005). By studying the differential impact of the intervention for children with different developmental profiles (i.e. population heterogeneity over time), it is possible to identify who benefits most from early intervention.

This study, published in full elsewhere (Côté, Orri, Tremblay and Doyle, 2018), addressed this issue by testing the differential impact of a multi-component treatment intervention programme in Ireland for subgroups of children defined by latent trajectories of skills. Two research questions were tested:

1. Did the intervention impact the probability of following a better developmental trajectory? Specifically, did children who received the treatment exhibit a lower probability of following a poor trajectory (or a higher probability of following a good trajectory), regardless of their initial levels of behavioural problems, cognitive skills, or propensity for health service use?

2. Within each trajectory, did treated children perform better than controls? Specifically, did children on poor developmental trajectories benefit the most from the intervention and, conversely, did children on good trajectories benefit the most?

Method

We used data from the Preparing for Life (PFL) randomised trial (Northside Partnership, Doyle and UCD Geary Institute PFL Evaluation Team, 2018; see also Doyle et al., 2015, 2017c), a programme aimed at promoting children’s development by supporting parents living in a disadvantaged community in Dublin from pregnancy until age four or five using three intensive parenting supports – a home visiting programme, a baby massage course, and the Triple P Positive Parenting Programme. The study included 233 families who were recruited during pregnancy and randomly assigned to a treatment group receiving the parenting supports or a control group receiving a reduced form of intervention.

The study outcomes were: internalised and externalising behaviours, general cognitive skills, vocabulary, and health service use, and these were repeatedly measured from six months to four years of age. First, the developmental trajectories for these outcomes were estimated using Latent Class Growth Analysis (LCGA), which allows for the identification of unobserved but distinct groups following similar developmental trajectories. Second, logistic regressions were used to test whether the treatment group compared to the control group were more likely to follow the low rather than the high trajectory. Third, Wald tests were used to compare treatment and control groups symptoms scores within each trajectory (high and low).

Results

Question 1. Did the treatment impact children’s probability of following a better trajectory?

Behavioural outcomes (Table 2A) between 2 and 4 years

For externalising behaviours, children followed either a low (n=104, 60 per cent) or a high trajectory (n=68, 39 per cent). The proportion of children in the treatment and control groups was similar in both trajectories (OR=0.60, CI=0.40-0.90). For internalising behaviours, children followed either a high and slightly increasing (n=33, 19 per cent) or a low stable (n=139, 81 per cent) trajectory. The proportion of children in the treatment and control groups was similar in the two trajectories (OR=1.25, CI=0.59-2.71, Number Needed to Treat [NNT]=28).

Cognitive outcomes (Table 2B) between 1 and 4 years

Children followed either a high (n=109, 62 per cent) or low (n=68, 31 per cent) cognitive skills trajectory. Treatment children were more likely to follow the high cognitive skills trajectories (OR=4.50, CI=2.22-9.65, NNT=4). Children followed either a high stable (n=62, 36 per cent) or low declining (n=11, 64 per cent) vocabulary trajectory. Treatment children were more likely to follow the high vocabulary trajectory (OR=2.02, CI=1.08-3.82, NNT=6).

Health service use (Table 2C) between 6 months and 4 years

For the number of health clinic visits, children followed either a high and increasing (n=33, 18 per cent) or low (n=148, 82 per cent) trajectory. Treatment and control children did not differ in their probability of following either trajectory (OR=1.68, CI=0.78-3.75, NNT=13).

Question 2. Within each trajectory, did treated children perform better than controls?

Behavioral outcomes (Table 3A)

Within the high externalising behaviour trajectory, treated children had lower scores than controls at each time point, with medium to large effect sizes (Hedges’g: 0.45-to-0.58, p<0.05). Within the low externalising behaviour trajectory, treated and control children had similar externalising scores at all time points (Hedges’g: 0.03-to-0.17, p>0.05). No differences were found in the overall rate of change (slope) between the treatment and control groups in either the high (Hedges’g: 0.23, p<0.344) or low (Hedges’g: 0.03, p<0.911) trajectories.

Similarly, no significant differences between the groups were found for the mean or the slope of the internalising trajectories for both the high (intercepts, Hedges’g: 0.48-to-0.56, p<0.05; slope, Hedges’g: 0.23, p<0.548) and low (intercepts, Hedges’g: 0.08-to-0.12, p>0.05; slope, Hedges’g: 0.22, p<0.548) trajectory groups.

Cognitive outcomes (Table 3B)

For the cognitive skill trajectories, no differences were found between treatment and control children (in both the high and low trajectories) for the mean score at each time point (high trajectory, Hedges’g: 0.01-to-0.13, p>0.05; low trajectory, Hedges’g: 0.03-to-0.17, p>0.05), or the change over time (high trajectory, Hedges’g: quadratic slope: 0.09, p=0.807; low trajectory, Hedges’g: quadratic slope: 0.07, p=0.510). The same pattern was found for the vocabulary trajectories.

Health service use (Table 3C)

For the health clinic visit trajectories, there were no differences in the mean number of visits for the treatment group compared to the control group across all time points for either trajectory (high trajectory, Hedges’g: 0.05-to-0.28, p>0.05; low trajectory, Hedges’g: 0.04-to-0.22, p>0.05). In addition, no differences were found in the rate of change over time for children in the low trajectory (Hedges’g linear and quadratic slopes: 0.20, p=0.026, and 0.00, p>0.300). However, for the high trajectory, the control group increased their number of health visit significantly faster than the treatment group (Hedges’g linear and quadratic slopes: 0.37, p<0.041, and 0.26, p<0.075).

Discussion

We found that a five-year, multi-component early intervention programme providing education and social support to families living in economic deprivation had moderate-to-large positive effects on children’s behavioural and cognitive development and health services use between six months and four years of age. These results
were in line with previous findings of the PFL trial (Doyle et al., 2015, 2017a, 2017b) and extended this body of work by testing the impact on children’s developmental patterns (i.e. population heterogeneity).

We found impacts on all three types of outcomes, which is in line with the focus of the PFL curriculum. First, the positive effect for externalising problems was limited to children in the high externalising trajectory; among children with the most problems, treated children had lower levels of externalising behaviour than controls, but no such difference was found among children with low levels of externalising problems. This result is in line with the compensatory hypothesis, suggesting that children with the highest levels of problems should gain the most from early intervention. Externalising behaviours (for example, physical aggression) are normative during early childhood, but children exhibiting the highest levels of such behaviours are at risk of continuing on a chronic trajectory (Côté et al., 2008; Tremblay, Vitaro and Côté, in press). Since children with high externalising behaviours are typically the most resistant to treatment, this study suggests that an intensive intervention from pregnancy to age four can prevent chronic externalising problems.

Second, concerning cognitive skills, our findings are in line with the average treatment effect hypothesis, whereby all children benefited from the intervention regardless of their initial levels of skills. The treatment increased children’s probability of following the high-level trajectory for both general cognitive skills and vocabulary, which suggests that early investment via PFL was an effective strategy for skill improvement. As demonstrated by the low NNT, the treatment effect was clinically relevant: four (cognitive skills) and six (vocabulary) children needed to receive PFL to improve outcomes over six months. As demonstrated by the low NNT, the treatment effect was clinically relevant: four (cognitive skills) and six (vocabulary) children needed to receive PFL to improve outcomes over six months, and anticipate the frequency of visits between six months and three years, and then a declining frequency. Thus, PFL treated families relied less on health services.

Comparing our results to the literature is inherently limited due to PFL’s longer than average duration, multi-treatment nature, and the use of trajectory analysis. However, results are in line with those reported by the Healthy Families America (HFA) and Parents as Teachers (PAT), both five-year home visiting programmes, showing favourable effects on cognitive development after twenty-four months, but not before, while having little if no impact on child health at any time point (Anisfeld, Sandy and Guterman, 2004; Caldera et al., 2007; Drazen and Haust, 1993; Duggan et al., 2007; Kirkland and Mitchell-Herzfeld, 2012; Landsvirk et al., 2002; Wagner; Carneto and Gerlach-Dowin, 1996). Previous studies testing the impact of home visiting programmes on verbal skills have been inconclusive, with several reports of negative effects (Gutentag et al., 2014; Peacock, Konrad, Watson, Nickel, and Muhajarine, 2013). The HFA programme also reported positive effects on children’s internalising and externalising behaviour at twenty-four months (Caldera et al., 2007; Landsvirk et al., 2002). The magnitude of the effects observed in PFL was overall larger than the magnitude of the effects reported in those programmes.

Strengths of the study include a rigorous trial design and frequently measured outcomes over four years allowing us to account for patterns of stability/change over time and address the heterogeneity in children’s developmental trajectories. Main limitations of the study are the small number of children in one of the two trajectories for some of the outcomes, which may have limited our power to detect significant effects (for example, internalising problems), and the reliance on parent-reported measures of children’s development, which may be subject to differential misreporting.

In conclusion, we found that PFL, a five-year prenatally commencing programme, was effective in improving children’s behavioural, cognitive, and health service use trajectories over the first four years of life. The programme was most effective for children with the most severe behavioural problems but was not effective in preventing problem behaviours from emerging. This is in line with the compensatory hypothesis, and suggests that preventive interventions for behavioural problems may be most effective by targeting children with the most severe problems. Conversely, for cognitive skills, the intervention consistently placed all children on a better trajectory yet had no impact on the development within those trajectories. Thus, children benefited regardless of their initial levels of skills, which provides support for the average treatment effects hypothesis, suggesting that less-targeted interventions may be effective for cognitive development.

Acknowledgements

We would like to thank the Northside Partnership who provided funding for the Preparing for Life evaluation through The Atlantic Philanthropies and the Department of Children and Youth Affairs, and the Children’s Research Network, and the Children’s Research Network for providing funding through the Prevention and Early Intervention Research Initiative Grant Scheme (CRN–PEI–2011). We are also grateful to all those who participated in and supported this research, especially the participating families and community organisations, the PFL intervention staff, and the Expert Advisory Committee. Thanks also to Prof. James Heckman, Prof. Colin Harmon, Prof. Cecily Kelleher, Prof. Sharon Ramey, and Prof. Craig Ramey for their guidance and advice throughout the project, and the Early Childhood Research Team at UCD Geary Institute for Public Policy for their contributions to the work.

References

Author information

Professor Sylvana Côté (PhD 2001, psychology from University of Montreal) is professor at the school of public health at the University of Montreal and researcher at the INSERM UNIT1219 at Bordeaux University. She holds the IDeX (Initiative of Excellence) Chair ‘Origin’ and directs the INSERM Life Span Health Promotion team. She studies the family and individual factors for mental health and academic success using population-based cohort data and experimental designs. Her work is grounded in the developmental and life span approaches.

Dr Massimiliano Orri has a multidisciplinary academic training combining public health (MSc) and psychology (MSc, PhD), and he is currently a post-doctoral fellow at the Research Unit on Children Psychosocial Maladjustment and Department of Psychiatry, McGill University. His research focuses on the long-term effect of early childhood experience, behavioural development, and psychopathology over the lifespan. His work includes the application of longitudinal data analysis techniques to data from longitudinal cohorts spanning from birth to adulthood.

Professor Richard E. Tremblay is emeritus professor at the University of Montreal (pediatrics and psychology) and at University College Dublin School of Public Health. He is also director of the Centre of Excellence on Early Childhood Development (Canada), and founding editor of the web-based Encyclopedia on Early Childhood Development. He is a fellow of the American Association for the Advancement of Science and of the Royal Society of Canada. He received the Stockholm Prize in Criminology (2017) and the Lauer Award from the French Academy of Moral and Political Sciences (2008) for his work on early prevention of antisocial behaviour.

Dr Orla Doyle is an associate professor in the University College Dublin (UCD) School of Economics and a research fellow at the UCD Geary Institute for Public Policy. The core focus of her research is a micro analysis of human development and education, and methods for evaluating policy interventions. She is the director of the UCD Childhood and Human Development Research Centre. Dr Doyle received her PhD in economics from Trinity College Dublin (TCD) and holds a BA in economics and social science (TCD).
Figure 1: Flow chart of sample size per data collection wave

Randomised (n=233)

Control
Allocated to Group = 118

10 (Baseline Interview)
Interviews conducted (n=101, 84%)
Dropouts (n=10, 8%)
Missed Interviews (n=7, 6%)

11 (6 months after birth)
Interviews conducted (n=90, 76%)
Dropouts (n=10, 14%)
Missed Interviews (n=12, 10%)

12 (12 months after birth)
Interviews conducted (n=83, 70%)
Dropouts (n=7, 14%)
Missed Interviews (n=18, 15%)

13 (18 months after birth)
Interviews conducted (n=74, 62%)
Dropouts (n=5, 13%)
Missed Interviews (n=25, 21%)

14 (24 months after birth)
Interviews conducted (n=70, 57%)
Dropouts (n=9, 16%)
Missed Interviews (n=25, 21%)

15 (36 months after birth)
Interviews conducted (n=76, 64%)
Dropouts (n=9, 16%)
Missed Interviews (n=23, 19%)

16 (48 months after birth)
Interviews conducted (n=73, 62%)
Dropouts (n=20, 17%)
Missed Interviews (n=26, 21%)

Treatment
Allocated to Group = 115

10 (Baseline Interview)
Interviews conducted (n=104, 80%)
Dropouts (n=7, 6%)
Missed Interviews (n=4, 3%)

11 (6 months after birth)
Interviews conducted (n=83, 72%)
Dropouts (n=22, 19%)
Missed Interviews (n=10, 9%)

12 (12 months after birth)
Interviews conducted (n=82, 70%)
Dropouts (n=23, 20%)
Missed Interviews (n=10, 9%)

13 (18 months after birth)
Interviews conducted (n=80, 70%)
Dropouts (n=22, 19%)
Missed Interviews (n=10, 9%)

14 (24 months after birth)
Interviews conducted (n=82, 70%)
Dropouts (n=22, 19%)
Missed Interviews (n=10, 9%)

15 (36 months after birth)
Interviews conducted (n=75, 65%)
Dropouts (n=22, 19%)
Missed Interviews (n=11, 10%)

16 (48 months after birth)
Interviews conducted (n=74, 64%)
Dropouts (n=22, 19%)
Missed Interviews (n=10, 17%)

Figure 2: Developmental trajectories of behavioural outcomes

Reproduced with permission of the American Academy of Pediatrics; Licence number: 4381470854489.

For each outcome, the figures on the left show the trajectories in the entire sample, while the figures on the right show the trajectories by intervention group (solid lines represent the treatment group, dashed lines represent the control group).

The trajectories were estimated for all subjects having at least one observation, and missing data were handled using Full Information Maximum Likelihood (assuming missing at random).
Figure 3: Developmental trajectories of cognitive outcomes

Figure 4: Developmental trajectories of health service use outcomes

For each outcome, the figures on the left show the trajectories in the entire sample, while the figures on the right show the trajectories by intervention group (solid lines represent the treatment group, dashed lines represent the control group).

For the vocabulary score, although all the tests reported in Table 3B take into account normalization by age and sex as for the MacArthur-Bates Communicative Development Inventories manual, we report the corresponding raw score (i.e., number of words) in Figure 3 to ensure a clearer understanding of the patterns of vocabulary acquisition.

Reproduced with permission of the American Academy of Pediatrics; Licence number: 4381470854489.
Entire sample RCT

<table>
<thead>
<tr>
<th></th>
<th>Treatment</th>
<th>Control</th>
<th>Odds Ratio (CI)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Behavioral outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Externalising behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High trajectory</td>
<td>68 (39.54)</td>
<td>33 (38.37)</td>
<td>11.0 (0.60-2.04)</td>
<td>40</td>
</tr>
<tr>
<td>Low trajectory</td>
<td>104 (60.47)</td>
<td>53 (60.23)</td>
<td>51 (59.30)</td>
<td>1</td>
</tr>
<tr>
<td>Internalising behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High trajectory</td>
<td>33 (19.19)</td>
<td>15 (17.44)</td>
<td>12.5 (0.59-2.71)</td>
<td>28</td>
</tr>
<tr>
<td>Low trajectory</td>
<td>139 (80.81)</td>
<td>71 (82.56)</td>
<td>68 (70.07)</td>
<td>1</td>
</tr>
<tr>
<td>B. Cognitive outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General cognitive skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High trajectory</td>
<td>109 (61.58)</td>
<td>44 (49.44)</td>
<td>65 (73.86)</td>
<td>2.89 (1.55-5.50)</td>
</tr>
<tr>
<td>Low trajectory</td>
<td>68 (38.42)</td>
<td>45 (50.56)</td>
<td>23 (26.14)</td>
<td>1</td>
</tr>
<tr>
<td>Total N</td>
<td>177 (100)</td>
<td>89 (100)</td>
<td>88 (100)</td>
<td></td>
</tr>
<tr>
<td>Vocabulary score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High trajectory</td>
<td>62 (35.84)</td>
<td>25 (28.09)</td>
<td>37 (44.05)</td>
<td>2.02 (1.08-3.82)</td>
</tr>
<tr>
<td>Low trajectory</td>
<td>111 (64.16)</td>
<td>111 (64.16)</td>
<td>47 (55.95)</td>
<td>1</td>
</tr>
<tr>
<td>Total N</td>
<td>173 (100)</td>
<td>89 (100)</td>
<td>88 (100)</td>
<td></td>
</tr>
<tr>
<td>C. Health service use outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of health clinic visits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High trajectory</td>
<td>33 (18.23)</td>
<td>13 (14.13)</td>
<td>20 (22.47)</td>
<td>1</td>
</tr>
<tr>
<td>Low trajectory</td>
<td>148 (81.78)</td>
<td>79 (85.87)</td>
<td>69 (77.53)</td>
<td>1.68 (0.78-3.75)</td>
</tr>
<tr>
<td>Total N</td>
<td>181 (100)</td>
<td>92 (100)</td>
<td>89 (100)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Characteristics of the baseline sample

<table>
<thead>
<tr>
<th></th>
<th>Treatment</th>
<th>Control</th>
<th>p-value1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>25.46 (5.85)</td>
<td>25.30 (6.00)</td>
<td>0.85</td>
</tr>
<tr>
<td>First-time Mother %</td>
<td>0.54 (0.50)</td>
<td>0.50 (0.50)</td>
<td>0.49</td>
</tr>
<tr>
<td>Married %</td>
<td>0.14 (0.35)</td>
<td>0.18 (0.38)</td>
<td>0.52</td>
</tr>
<tr>
<td>Low Education % (left ≤ age 16)</td>
<td>0.34 (0.47)</td>
<td>0.40 (0.49)</td>
<td>0.34</td>
</tr>
<tr>
<td>College Degree %</td>
<td>0.03 (0.17)</td>
<td>0.03 (0.17)</td>
<td>0.86</td>
</tr>
<tr>
<td>Unemployed %</td>
<td>0.43 (0.50)</td>
<td>0.41 (0.49)</td>
<td>0.71</td>
</tr>
<tr>
<td>Resides in Public Housing %</td>
<td>0.55 (0.50)</td>
<td>0.55 (0.50)</td>
<td>0.97</td>
</tr>
<tr>
<td>Long Term Chronic Illness %</td>
<td>0.11 (0.31)</td>
<td>0.08 (0.27)</td>
<td>0.50</td>
</tr>
<tr>
<td>Prior Mental Health Condition %</td>
<td>0.28 (0.45)</td>
<td>0.24 (0.43)</td>
<td>0.46</td>
</tr>
<tr>
<td>Planned Pregnancy %</td>
<td>0.29 (0.46)</td>
<td>0.30 (0.46)</td>
<td>0.89</td>
</tr>
<tr>
<td>Smoked During Pregnancy %</td>
<td>0.51 (0.50)</td>
<td>0.48 (0.50)</td>
<td>0.66</td>
</tr>
<tr>
<td>Drank Alcohol During Pregnancy %</td>
<td>0.28 (0.45)</td>
<td>0.29 (0.45)</td>
<td>0.95</td>
</tr>
<tr>
<td>N</td>
<td>105</td>
<td>101</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Effect of the intervention on the developmental trajectories of children behavioural (A), cognitive (B), and health service use (C) outcomes

Reproduced with permission of the American Academy of Pediatrics; Licence number: 4381470854489

Descriptive statistics are mean (standard deviation).

1 Two-tailed p-value calculated from permutation tests with 100,000 replications.

Odds Ratios were interpreted as follows: ‘small’ <1.5, ‘medium’ between 1.5 and 4.1, and ‘large’ >4.1. (Chen, Cohen and Chen, 2010).
Table 3: Effect of the intervention within each developmental trajectory of children's behavioural (A), cognitive (B), and health service use (C) outcomes

HIGH TRAJECTORY

<table>
<thead>
<tr>
<th></th>
<th>Control Group</th>
<th>Treatment Group</th>
<th>Effect Size</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Behavioural outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Externalising behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean score at each point in time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 months</td>
<td>17.65 (1.19)</td>
<td>14.45 (1.22)</td>
<td>0.45</td>
<td>0.041</td>
</tr>
<tr>
<td>36 months</td>
<td>16.99 (1.49)</td>
<td>12.54 (1.15)</td>
<td>0.58</td>
<td>0.013</td>
</tr>
<tr>
<td>48 months</td>
<td>16.34 (2.29)</td>
<td>10.64 (1.46)</td>
<td>0.52</td>
<td>0.033</td>
</tr>
<tr>
<td>Rate of change over time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear slope</td>
<td>-0.55 (0.88)</td>
<td>-1.58 (0.58)</td>
<td>0.24</td>
<td>0.344</td>
</tr>
<tr>
<td>Internalising behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean score at each point in time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 months</td>
<td>17.08 (8.78)</td>
<td>13.87 (4.97)</td>
<td>0.46</td>
<td>0.610</td>
</tr>
<tr>
<td>36 months</td>
<td>18.27 (10.19)</td>
<td>14.03 (4.16)</td>
<td>0.56</td>
<td>0.134</td>
</tr>
<tr>
<td>48 months</td>
<td>19.47 (14.28)</td>
<td>14.19 (5.04)</td>
<td>0.51</td>
<td>0.175</td>
</tr>
<tr>
<td>Rate of change over time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear slope</td>
<td>1.00 (5.05)</td>
<td>0.13 (2.32)</td>
<td>0.23</td>
<td>0.548</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Control Group</th>
<th>Treatment Group</th>
<th>Effect Size</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Cognitive outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Cognitive skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean score at each point in time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>123.39 (16.52)</td>
<td>120.93 (20.66)</td>
<td>0.13</td>
<td>0.466</td>
</tr>
<tr>
<td>18 months</td>
<td>123.53 (14.25)</td>
<td>122.50 (15.29)</td>
<td>0.07</td>
<td>0.467</td>
</tr>
<tr>
<td>24 months</td>
<td>122.82 (13.78)</td>
<td>122.92 (12.88)</td>
<td>0.01</td>
<td>0.931</td>
</tr>
<tr>
<td>36 months</td>
<td>118.91 (13.52)</td>
<td>120.30 (11.24)</td>
<td>0.12</td>
<td>0.693</td>
</tr>
<tr>
<td>48 months</td>
<td>118.65 (14.19)</td>
<td>113.08 (13.48)</td>
<td>0.10</td>
<td>0.760</td>
</tr>
<tr>
<td>Rate of change over time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear slope</td>
<td>0.09 (1.21)</td>
<td>0.36 (1.56)</td>
<td>0.18</td>
<td>0.903</td>
</tr>
<tr>
<td>Quadratic slope</td>
<td>-0.02 (0.02)</td>
<td>-0.01 (0.05)</td>
<td>0.09</td>
<td>0.807</td>
</tr>
</tbody>
</table>

LOW TRAJECTORY

<table>
<thead>
<tr>
<th></th>
<th>Control Group</th>
<th>Treatment Group</th>
<th>Effect Size</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Behavioural outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Externalising behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean score at each point in time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 months</td>
<td>5.62 (1.03)</td>
<td>5.41 (0.88)</td>
<td>0.03</td>
<td>0.877</td>
</tr>
<tr>
<td>36 months</td>
<td>4.99 (0.81)</td>
<td>4.70 (0.66)</td>
<td>0.05</td>
<td>0.890</td>
</tr>
<tr>
<td>48 months</td>
<td>4.35 (0.74)</td>
<td>4.00 (0.65)</td>
<td>0.07</td>
<td>0.939</td>
</tr>
<tr>
<td>Rate of change over time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear slope</td>
<td>-0.53 (0.32)</td>
<td>-0.59 (0.34)</td>
<td>0.03</td>
<td>0.911</td>
</tr>
<tr>
<td>Internalising behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean score at each point in time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 months</td>
<td>4.80 (0.50)</td>
<td>4.31 (0.48)</td>
<td>0.12</td>
<td>0.219</td>
</tr>
<tr>
<td>36 months</td>
<td>4.77 (0.47)</td>
<td>4.33 (0.40)</td>
<td>0.12</td>
<td>0.660</td>
</tr>
<tr>
<td>48 months</td>
<td>4.75 (4.92)</td>
<td>4.34 (3.69)</td>
<td>0.09</td>
<td>0.802</td>
</tr>
<tr>
<td>Rate of change over time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear slope</td>
<td>-0.02 (0.24)</td>
<td>0.01 (0.19)</td>
<td>0.02</td>
<td>0.819</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Control Group</th>
<th>Treatment Group</th>
<th>Effect Size</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Cognitive outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Cognitive skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean score at each point in time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>106.27 (24.13)</td>
<td>103.57 (14.85)</td>
<td>0.13</td>
<td>0.504</td>
</tr>
<tr>
<td>18 months</td>
<td>105.50 (19.02)</td>
<td>102.31 (16.61)</td>
<td>0.17</td>
<td>0.715</td>
</tr>
<tr>
<td>24 months</td>
<td>104.35 (19.05)</td>
<td>100.98 (23.26)</td>
<td>0.16</td>
<td>0.563</td>
</tr>
<tr>
<td>36 months</td>
<td>100.85 (21.34)</td>
<td>98.13 (26.93)</td>
<td>0.12</td>
<td>0.792</td>
</tr>
<tr>
<td>48 months</td>
<td>95.78 (26.04)</td>
<td>95.02 (22.27)</td>
<td>0.03</td>
<td>0.888</td>
</tr>
<tr>
<td>Rate of change over time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear slope</td>
<td>-0.10 (2.25)</td>
<td>-0.20 (2.89)</td>
<td>0.04</td>
<td>0.321</td>
</tr>
<tr>
<td>Quadratic slope</td>
<td>0.00 (0.05)</td>
<td>0.00 (0.07)</td>
<td>0.07</td>
<td>0.510</td>
</tr>
</tbody>
</table>

The table shows the estimated mean (i.e., intercept parameters) at each time point and the estimated slope for the treatment and control groups within each trajectory. Difference between treatment and control groups for the estimated mean/slope are quantified using Hedges'g and statistically tested using Wald test. Hedges'g and interpreted as follows: 'small' <0.20, 'medium' between 0.20 and 0.50, and 'large' >0.50.(Cohen, 1988)

Reproduced with permission of the American Academy of Pediatrics; Licence number: 4381470854489

SE = Standard Error

Table continued overleaf
Table 3: Effect of the intervention within each developmental trajectory of children's behavioural (A), cognitive (B), and health service use (C) outcomes

<table>
<thead>
<tr>
<th>HIGH TRAJECTORY</th>
<th>LOW TRAJECTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Cognitive outcomes</td>
<td>B. Cognitive outcomes</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>Mean score at each point in time</td>
</tr>
<tr>
<td>Control</td>
<td>Control group</td>
</tr>
<tr>
<td>Mean score at each point in time</td>
<td>Effect size</td>
</tr>
<tr>
<td>12 months</td>
<td>68.91 (34.95)</td>
</tr>
<tr>
<td>18 months</td>
<td>72.74 (12.90)</td>
</tr>
<tr>
<td>24 months</td>
<td>76.58 (20.15)</td>
</tr>
<tr>
<td>Rate of change over time</td>
<td>Linear slope</td>
</tr>
<tr>
<td>C. Cognitive outcomes</td>
<td>Mean score at each point in time</td>
</tr>
<tr>
<td>Health clinic visits</td>
<td>Rate of change over time</td>
</tr>
<tr>
<td>Control</td>
<td>Control group</td>
</tr>
<tr>
<td>Mean score at each point in time</td>
<td>Linear slope</td>
</tr>
<tr>
<td>6 months</td>
<td>2.76 (2.92)</td>
</tr>
<tr>
<td>12 months</td>
<td>3.53 (3.86)</td>
</tr>
<tr>
<td>18 months</td>
<td>3.55 (3.94)</td>
</tr>
<tr>
<td>24 months</td>
<td>7 (3.66)</td>
</tr>
<tr>
<td>36 months</td>
<td>2.79 (3.37)</td>
</tr>
<tr>
<td>48 months</td>
<td>2.13 (3.43)</td>
</tr>
<tr>
<td>Rate of change over time</td>
<td>Linear slope</td>
</tr>
<tr>
<td>Quadratic slope</td>
<td>0.00 (0.01)</td>
</tr>
</tbody>
</table>

The table shows the estimated mean (i.e., intercept parameters) at each time point and the estimated slope for the treatment and control groups within each trajectory. Difference between treatment and control groups for the estimated mean/slope are quantified using Hedges'g and statistically tested using Wald test. Hedges'g and interpreted as follows: 'small' <0.20, 'medium' between 0.20 and 0.50, and 'large' >0.50. (Cohen, 1988).

Reproduced with permission of the American Academy of Pediatrics; Licence number: 4381470854489

SE = Standard Error
Gender differences in cognitive development and school readiness

Findings from a randomised controlled trial of children from communities of socio-economic disadvantage in Ireland

Gráinne Kent and Vasiliki Pitsia
Introduction

In recent years, through collaborations between Atlantic Philanthropies and the Irish Government, there has been ever-increasing attention on early intervention and prevention programmes in Ireland, which are targeted at geographic areas that have been designated as socio-economically disadvantaged (McAvoy, Purdy, Sneddon and Mac Evilly, 2013). These programmes aim to reduce the negative effects of childhood adversities. In understanding developmental trajectories in early childhood, one factor that requires careful consideration is gender and whether differences exist between boys and girls in early childhood development (Ertem et al., 2018). This is of particular importance in light of recent findings by Garcia, Heckman and Ziff (2017), who argued that boys have greater vulnerability to lower quality environments than girls. While an extensive review of the research literature on gender differences in early childhood development is beyond the scope of this short research article, evidence of gender differences across the domains of cognitive development and school readiness during early childhood is briefly discussed below.

With regards to their cognitive development, which includes building skills such as comprehending the world, thinking logically, problem solving and analysing and interpreting information (Doyle and PFL Evaluation Team, 2016), girls have been found to demonstrate an advantage over boys in their cognitive function as measured by intelligence tests. For instance, Palejwala and Fine (2015) utilised the Wechsler Primary and Preschool Scale of Intelligence with a sample of children between the ages of two and seven years and found evidence of girls outperforming boys in this early childhood stage. Similarly, von Stumm and Plomin (2015) found significant gender differences in intelligence favouring girls in early childhood (between two and four years of age). However, this difference mostly disappeared in later childhood and adolescence and was no longer evidenced by the age of sixteen.

Indeed, this early cognitive advantage of girls has been found in more recent studies, for example, a 2017 study by Toivainen, Papageorgiou, Tosto and Kovas of children aged two to four years found that girls had significantly stronger verbal and non-verbal abilities than boys; however, by later childhood (between ten and twelve years of age) boys outperformed girls in non-verbal abilities. Hence, a possible advantage for girls in cognitive development during early childhood appears to reduce over time. Further research is necessary to understand the mechanisms underlying this effect and whether any long-term effects result from this early discrepancy.

Furthermore, while girls appear to score higher in overall measures of early cognitive abilities, findings referring to the different elements of cognition have been mixed. An advantage favouring girls has been evident in specific domains of cognitive abilities, such as processing speeds (Palejwala and Fine, 2015) and verbal memory (Merrill, Yang, Roskos and Steele, 2016). On the contrary, boys have been found to have stronger visual processing (Palejwala and Fine, 2015) and spatial ability skills (Merrill et al., 2016). It is of vital importance to explore such discrepancies, given the growing body of research literature suggesting that early abilities in the cognitive domain are associated with academic and vocational outcomes and overall health and well-being in later life (Batty, Deary and Gottfredson, 2007; Bornstein, Hahn, and Wolke, 2013; Hofer and Clouston, 2014; Koenen et al., 2009).

‘School readiness’ is a term often used to describe how socially, physically, and intellectually ready children are to start formal schooling. Even though it is considered an outcome of the early years, it has been found to have a determining influence on a child’s development, forming the foundation upon which further learning and development is based (Doyle, Finnegans and McNamara, 2010; Janus and Offord, 2007). During early childhood, girls have been found to have an advantage in the domain of school readiness. For example, Isaacs (2012) found that the typical five-year-old girl in the US is, on average, sixteen points ahead of the typical five-year-old boy in the area of school readiness. In Ireland, it was reported that the majority of early years educators and teachers rated girls as more school ready than boys on their emotional readiness, independence, maturity and organisational skills (Ring et al., 2016). Studies have found that girls also have an advantage in their emotional expression (Chaplin and Aldao, 2013), emotional development (Maguire, Neins, McCann and Connolly, 2016), socio-emotional development (Masnjak, 2017) and social competence (Barbu, Cabanes and le Maner-Ibrisissi, 2011). However, recent research has found that boys have an advantage in their physical activity levels, indicating that they may be more physically ready to start formal schooling (Masnjak, 2017).

With the aforementioned evidence suggesting gender disparities in early childhood development, the necessity of early intervention and prevention programmes that attempt to reduce such gaps is magnified. If these gender gaps are not addressed early, they may continue to exist across the lifespan. Indeed, previous research has highlighted the effectiveness of early childhood intervention programmes for children living in areas of disadvantage in reducing gender inequalities (Garcia et al., 2017). Given the growing interest in early childhood education within the Irish context, the following research questions were addressed in the current study:

1. At four years of age do boys and girls differ in their cognitive development?
2. At five years of age do boys and girls differ in their school readiness?
3. Does a high-intensity, early intervention programme reduce gender discrepancies in cognitive abilities at four years of age and school readiness at five years of age?

Method

Data

The current study involved a secondary analysis of the Preparing for Life (PFL) data (Northside Partnership, Doyle and UCD Geary Institute PFL Evaluation Team, 2018) and Children’s Profile at School Entry (CPSE) data (Northside Partnership, Doyle and UCD Geary Institute PFL Evaluation Team, 2017). This research was supported by the Children’s Research Network Prevention and Early Intervention Research Initiative Research Grant Scheme 2017–18.

Participants

Participants came from communities within the expanded PFL catchment area. All communities were deemed as being demographically similar based on analyses. Of the mothers recruited into the PFL programme, ninety-nine per cent were of Irish ethnicity, of whom five per cent were members of the Irish Travelling community.

Participants were randomly allocated to either a low or high treatment group for the duration of the programme (from pregnancy through to when children started school). Between 2008 and 2010, a total of 233 women were recruited with 118 being assigned to the low treatment group and 115 being assigned to the high treatment group. While both groups received developmental toys, access to preschool, public health workshops and a support worker, the main difference between the two groups was that families in the high treatment group received more supports and home visits from a trained mentor and they also attended group-based, parent training during the programme (for further information on the low and high treatment groups see Doyle et al., 2016). By providing additional supports and resources to both treatment groups, the PFL programme accounted for any ethical issues that may have arisen.
Measures

Child cognitive development at four years of age was assessed using the British Ability Scales II (BAS II; Elliott, Smith and McCulloch, 1997). The scores in each cognitive development domain ranged from 49 to 137 with higher scores indicating higher levels of behaviours associated with each domain (Doyle and PFL Evaluation Team, 2016). Data on cognitive development were available for 128 children in total.

Child school readiness was assessed at school entry using a teacher completed, 48-item version of the Early Development Instrument (SEDI; Janus, Duku and Stat, 2005). The scores in each school readiness domain ranged from zero to ten with higher scores indicating higher levels of behaviours associated with each domain (Doyle and PFL Evaluation Team, 2013). Data on school readiness were available for 134 children in total.

Results

Gender differences in cognitive development

Figure 1 presents the gender differences in cognitive development domains across the two treatment groups, as measured by the BAS II. Girls demonstrated higher scores compared to boys in all cognitive development domains in a consistent manner within both treatment groups. In the low treatment group, the largest gender difference was noted in spatial ability, whereas the smallest difference was noted in verbal ability. Gender differences in pictorial reasoning and spatial ability were statistically significant. In the high treatment group, gender differences in pictorial reasoning and spatial ability were of similar magnitude, whereas boys and girls differed to a lesser extent in the verbal ability domain. Gender difference in pictorial reasoning was statistically significant. It is noteworthy that, while gender differences in verbal ability and spatial ability were larger in the low treatment group compared to the high treatment group, for pictorial reasoning the gender difference was larger in the high treatment group. Overall, both boys and girls from the high treatment group had higher scores compared to children from the low treatment group across all domains.

Gender differences in school readiness

Figure 2 presents the gender differences within the two treatment groups across the school readiness domains, as measured by the SEDI. Girls demonstrated higher scores compared to boys in all school readiness domains in both treatment groups. In the low treatment group, the largest gender difference was noted in the communications skills and general knowledge domain, whereas the smallest gender difference was noted in the language and cognitive development domain. Differences in the domains of social competence, emotional maturity and communications skills and general knowledge were statistically significant. In the high treatment group, the largest gender difference was, again, noted in communications skills and general knowledge, whereas the smallest gender difference was noted in the language and cognitive development domain. Gender differences in emotional maturity and communication skills and general knowledge were statistically significant. Gender differences in all domains of school readiness were smaller within the high treatment group than the low treatment group and children from the high treatment group had higher scores across all school readiness domains (with the exception of girls’ emotional maturity).

In general, both boys and girls in the high treatment group performed better in the cognitive development and school readiness measures compared to their counterparts in the low treatment group, but none of the differences reached statistical significance. In addition, in most of the cognitive development and school readiness domains, gender differences were larger in the low treatment group compared to the high treatment group.
Discussion

Overall, the current study found evidence of gender disparities across both cognitive outcomes and school readiness behaviours, with girls demonstrating higher scores than boys. This pattern was evident across all domains of cognitive development and school readiness behaviours and contradicts previous research that has suggested an advantage for boys in the cognitive domain of spatial ability (Merrill et al., 2016) and the school readiness domain of physical development (Masnjak, 2017). However, the findings corroborated other previous research, which suggests that gender differences favour girls in cognitive and school readiness outcomes during early childhood (for example, Isaacs, 2012; Palejwala and Fine, 2015; von Stumm and Plomin, 2015). Given the focus of the current study on a sample of children from an area of socio-economic disadvantage, it may be that boys have less opportunities to develop in these domains. Additionally, this gender disparity across both treatment groups possibly indicates that the interventions being delivered in early childhood may not adequately address gender gaps in these areas.

Even though gender differences continued to exist in both the low and the high treatment groups, findings indicated that gender gaps were less pronounced in the high treatment compared to the low treatment group. Thereby, differential intensity-dependent intervention effects are highlighted, given that both groups received interventions that only varied in intensity. This finding suggests that the high treatment intervention may have reduced gender gaps, supporting previous research that has found similar results (Garcia et al., 2017). More specifically, additional supports and home visits by a trained mentor, group-based parent training and access to infant massage during the course of the programme were the intervention components that differentiated the high from the low treatment group. Hence, smaller differences among boys and girls in cognitive development and school readiness behaviours during early childhood in the high treatment group may be attributed to these intervention elements. It is possible that these intervention elements favour boys’ development in particular. However, it should be taken into account that this finding is reflective of the overall findings from the PFL evaluation, where children from the high treatment group were found to be more advanced in terms of their cognitive development and school readiness than children in the low treatment group (Doyle et al., 2016). Therefore, more in-depth research is required to delineate the effect of early intervention and prevention programmes on gender discrepancies.

A number of limitations should be considered in the interpretation of the above findings. The relatively small sample, the narrow age range of the participants and the fact that the sample was derived from areas classified as socio-economically disadvantaged may limit the generalisation of the findings beyond similar samples. Nevertheless, insights from this study are valuable and may well inform further research in the area. In fact, future research may benefit from exploring these effects across a nationally representative sample.

Overall, the current research has the potential to make a valuable contribution to the field of early intervention and prevention in Ireland through the novel insights into gender differences in children’s developmental trajectories during early childhood. Previous research has shown that boys from areas designated as socio-economically disadvantaged are likely to face higher risk in their cognitive development and school readiness during early childhood. The current research demonstrates that high intensity, early intervention and prevention programmes have potential to address particular areas that boys struggle with. These findings can contribute to the design and delivery of more focused programmes within Irish and other similar contexts. Findings from the current study require careful consideration by policy makers in the design and implementation of interventions which target children living in socio-economically disadvantaged areas.

References

different studies have examined gender differences in cognitive abilities and academic performance. For example, von Stumm and Plomin (2015) found that socioeconomic status and the growth of intelligence from infancy through adolescence are influenced by gender. Other studies have explored the influence of spatial and verbal abilities on route learning performance in a virtual environment (Merrill et al., 2016).

In addition to cognitive abilities, research has also looked at gender differences in social and emotional development. Masnjak (2017) and McAvoy et al. (2013) both examined gender differences in these areas, with the latter noting the importance of early intervention and prevention for children and young people.

Northside Partnership (2018) conducted a study on preparing for life, which included an examination of concepts of school readiness among parents and educators in Ireland. Their findings highlight the need for early intervention and prevention strategies to support children's development.

Vasiliki Pitsia is a PhD candidate at Dublin City University Institute of education. She holds a BSc in primary education and an MSc in quantitative methods and statistical analysis in education. Her research interests include research methods, educational assessment, statistical analysis, and large-scale studies.

Author information

Dr Gráinne Kent is a researcher and lecturer in developmental psychology at the National College of Ireland. She graduated from the National University of Ireland Maynooth with a doctorate in psychological science and holds a BSc psychology from Queens University Belfast. Gráinne is a board certified behaviour analyst and, before moving into academia, worked as an applied practitioner within the field of early intervention and prevention for a number of years. Her main research interests include early intervention and prevention, early childhood education, child development, language development, Autism Spectrum Disorder and behavioural psychology.

Understanding and addressing the concurrent needs of families living in the Colin Area
A secondary analysis of the Colin Early Intervention Community report card data
Colm Walsh and Gavin Davidson
Introduction

Previous reviews of whole family support services have found that family members often experience multiple issues, but responses to those issues vary greatly, are often bespoke and lack a strong evidence base (Batty, 2014). To address the complex social issues which families experience, there has been an explosion of interest around ‘what works’ (Olsson, 2010) data over recent years to help us understand how best to improve outcomes for families. But while there has been a growth in evidence-based approaches (Mihalic, Irvin, Fagan, Ballard and Elliot, 2004), these are normally targeted at specific populations (Walsh and Doherty, 2016) for narrow but well-defined issues (Aarons and Palinkas, 2007).

The reality, as we know, is that families are complex systems comprising of individuals who interact in even more complex systems, and interventions are not designed in ways that acknowledge these complexities (Guastaferro et al., 2017). Practitioners understand that for many families, crises can arise at any time and often exacerbate pre-existing challenges. These might include a range of practical issues but also more complex psycho-social challenges. Financial issues can be common, but some families also experience trauma, abuse, addiction, incarceration and ill health, and often several of these at once (Lee, Anderson, Quranta and Shim, 2018). In one review from Northern Ireland, families experienced an average of four issues concurrently (Walsh and Doherty, 2016). Blended models, in which distinct but complementary interventions are available to families based on their specific needs, is one intervention model which is currently under-evaluated. In this study we examined the extent to which families engaged in a complex, early intervention programme in which they could access multiple interventions concurrently to address different issues experienced by family members; and whether it is possible to attribute improved outcomes to this engagement.

The Colin Early Intervention Community (CEIC)

The Colin Neighbourhood is located on the outskirts of greater West Belfast in County Antrim, has a population of approximately 30,000 people, and falls within the three per cent of most deprived areas of Northern Ireland. The unique demographic and deprivation features have contributed to a range of poor health, education and social outcomes for children and families on an inter-generational basis (NCB, 2012). The Colin Early Intervention Community (CEIC), which consists of a range of statutory, voluntary and community organisations, set out in 2011 with a vision that organisations would work differently together and be more coordinated in their approach. Implementing an Outcomes Based Accountability (OBA) Framework (Friedman, 2015), the CEIC provided data on outputs and outcomes for each quarter which were then converted into ‘report cards’ for dissemination. Report cards are summaries of analysed data, and report on key questions within the context of the OBA Framework, namely (1) how much did we do (2) how well did we do it (3) is anyone better off? In many ways, this ‘practice informed by evidence’ approach was still novel during the inception of CEIC and represented a strategic shift by service providers in the voluntary, community and statutory sectors. In 2017, a team of researchers from Queen’s University Belfast undertook a secondary analysis of the report card data collected by CEIC since its inception, with support from the Children’s Research Network Prevention and Early Intervention Research Initiative Research Grant Scheme.

Aims of the study

The aim of this retrospective, secondary analysis was to identify the extent to which families engaged in multiple interventions to address, or seek support for, a range of issues or challenges (see Table 1). This article outlines the process by which these data were collected and analysed, as well as the findings that emerged from that analysis.

<table>
<thead>
<tr>
<th>Table 1: Overview of the research questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall research question</td>
</tr>
<tr>
<td>Do families access multiple interventions concurrently to address different issues that family members experience?</td>
</tr>
<tr>
<td>Specific research questions</td>
</tr>
<tr>
<td>1. How many families have benefitted from services within CEIC?</td>
</tr>
<tr>
<td>2. What are the reasons for referral into the programme and what are those pathways?</td>
</tr>
<tr>
<td>3. What proportion of families engaged in multiple interventions?</td>
</tr>
<tr>
<td>4. How are decisions taken around who engages in which intervention and when?</td>
</tr>
</tbody>
</table>

Method

Secondary analysis involves the re-analysis of data that were collected by someone else for a different purpose (Boslaugh, 2007). Despite a growth in the amount of data available within the community and voluntary sector; few datasets have been made available for further or secondary analysis. The first step in the process was to review the report card data. Familiarisation with the data is a critical step in understanding the utility of the information and what subsequent steps need to be taken to answer the research question. The second step in the process was to identify a method of standardising the data so that different service users could be linked across programmes. CEIC established a coding system during 2016. This was used as the cut-off point for the data included in the analysis. It was apparent that not all interventions subsequently used this coding system and therefore, our analysis was limited to families that could be tracked across different interventions. The third step was to become familiar with the clinical measures being used. The fourth step involved recording of the existing data to facilitate analysis. The fifth step involved analysis of that data and the findings are reported below. The details of 207 families were collated from the raw report card data. The data were analysed using SPSS Version 22. Descriptive statistics were conducted to examine the means, standard deviation and range across all variables. Independent samples t-tests were used to compare means between variables of interest. Cross-tabulations were used to compare categorical variables and Chi-square tests of independence were used to explore statistical relationships between them.

Summary of the findings

The CEIC programme comprises different, but complementary, intervention components. Because the aim of the study was to explore how individual family members access different elements of the programme concurrently, only those interventions which collated data using the same family identifiers were included in the review. Following the first review of all data, four interventions were included in the study (see Table 2). Some of these interventions focussed on the whole family, others solely on parents, and others on children or young people. The mode of delivery varied between individual and group work and was an important factor in recruitment and retention. This suggests that despite similarities, each intervention was positioned to address and respond to variability within families.

While it is not clear from the report card data how families were engaged in the programme or what all those pathways were, it appears that a mixture of professional referral as well as...
self-referral was common. Where referral data were collected, individual projects documented basic demographic data, such as name and age, as well as more specific information, such as presenting needs. However, there were few cases of documented referral data on families, and when it was evidenced there did not appear to be a coherent or consistent way of recording pathways into the CEIC. Some documented referral data included comprehensive needs analysis, whilst others collected only contact details and a brief statement of perceived need. Interestingly, where these data were collected, these families were more likely to engage in multiple interventions, indicating that their needs may have been more fully understood. Comparison of means of the number of interventions engaged in by families differed between those with referral information (m=148 interventions) and those without (m=111 interventions) and illustrates that this was at the point of statistical significance (t, 73=-3.6, p<.001). When referral information was routinely collected, families engaged in more elements of the programme.

There was evidence that a sizeable minority engaged in more than one programme. In fact, eighteen per cent (n=38) of families who engaged in the reviewed interventions within the specific time period (January 2016 to September 2017) engaged in multiple programmes. Within this group, the average number of interventions engaged in was 2.22, and ranged between two and four interventions.

Those who engaged in more than one intervention were more likely to complete the interventions. For instance, twelve per cent (n=20) of those who engaged in only one intervention left their intervention without any demonstrable evidence of partial or full completion. On the other hand, only three per cent (n=1) of those who completed more than one intervention left the intervention without any evidence of engagement.

Discussion

The potential for data to inform practice is often missed. Given the potential risks, the real-time decision making, and the requirement for staff to be informed by evidence, services require data-driven decision making, but the systems that facilitate this are not always in place. In this study, despite positive efforts to achieve this, we found little evidence that data were collected routinely to guide and inform practice. For example, it was difficult to track families across most of the interventions; it was difficult to establish which families came into CEIC and for what reason(s); the pathway(s) into the programme were not clear; and it was difficult to establish how decisions were made on which family members received which intervention, who made these decisions, and at which points these decisions were made. It was therefore difficult to answer our fourth research question, how are decisions taken around who engages in which intervention and when? The reasons for this appear to be related to the evaluation frameworks established by and on behalf of the commissioner of each evaluation. Data collected focussed on individual interventions as opposed to the synergy between the interventions; focussed on outputs such as the number of participants within each intervention; and focussed on outcomes such as the difference between baseline and endpoint measures. While this data is useful, particularly for funders and policy makers who appear to prefer synopsis rather than detail, it is limited.

Some families living in Colin are likely to experience one or more significant social issues (NCB, 2012) and we know from other empirical studies that the cumulative effect exacerbates already complex issues (Finkelhor, Shattuck, Turner and Hamby, 2015). It has been proposed that single issue interventions (for example, those that attend to parenting practices) are not and cannot be sufficient to address other concurrent issues (Guastafreddo et al, 2017). Therefore, blended models in which interventions are simultaneously implemented provide a conceptual framework to design complex services and potentially enhance outcomes that some families experience. It appears that in some cases, some families do receive multiple interventions, but this is neither strategically designed nor coherently coordinated. The CEIC programme provides some evidence that for families with chronic and complex needs, blending interventions could provide a platform for greater strategic delivery and coherent coordination.

Conclusion and recommendations

Engaging, supporting and improving outcomes for families who experience multiple adversity is complex. It is well established that single issue interventions cannot address multiple issues concurrently - they are not designed to. CEIC has demonstrated a vision of improving outcomes at the community level through coordinating services and the use of best evidence. Combining interventions is a novel approach and the mechanisms by which they are implemented are currently undervalued. This study demonstrated that there are some significant challenges associated with implementing blended approaches. Table 3 overleaf outlines the key lessons and recommendations.

Table 2: Interventions reviewed

<table>
<thead>
<tr>
<th>Intervention</th>
<th>No. of families engaged</th>
<th>Target Group</th>
<th>Target Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partnership with Parents</td>
<td>73</td>
<td>Parents of children aged 2-16 years</td>
<td>Family functioning</td>
</tr>
<tr>
<td>Strengthening Families</td>
<td>22</td>
<td>Parents of children aged 12-16 years</td>
<td>Parenting skills</td>
</tr>
<tr>
<td>Incredible Years</td>
<td>125</td>
<td>Parents of children aged 0-8 years</td>
<td>Family functioning</td>
</tr>
<tr>
<td>Mentoring for Achievement</td>
<td>32</td>
<td>Young people aged 10-18 years</td>
<td>Educational attainment</td>
</tr>
<tr>
<td>Total</td>
<td>252</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- **Intervention No. of families engaged**
- **Target Group**
- **Target Outcomes**

References:

- Finkelhor, Shattuck, Turner and Hamby, 2015.
Table 3: Summary of key learning and recommendations

<table>
<thead>
<tr>
<th>Domain</th>
<th>Lesson</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual</td>
<td>Single issue based interventions cannot attend to all the issues that families experience (Guastaferro et al., 2017). Blended approaches are about ensuring the right interventions are available when families need them.</td>
<td>Further investigation is needed to understand the complex issues that families experience and how they could be better served by blended approaches.</td>
</tr>
<tr>
<td>Operational</td>
<td>Not all families require multiple interventions (Berlinger et al., 2015). However, some families could benefit from a range of supports implemented concurrently to address variability of need within the family and between different members of the family.</td>
<td>Consideration should be given to prospective and controlled studies in order to enhance our understanding of how such conceptual frameworks could enhance the outcomes for families experiencing acute adversity.</td>
</tr>
<tr>
<td>Complex cases</td>
<td>Implementation is complex and dependent upon many internal organisational and external factors (Fixin, Blasé, Naom and Wallace, 2005). This becomes even more challenging when different organisations are implementing complementary interventions within the same programme.</td>
<td>A strategic approach is needed to ensure all internal policies and protocols promote and facilitate opportunities for joined up working.</td>
</tr>
<tr>
<td></td>
<td>Data should be collated, analysed and reported to demonstrate outcomes but also to inform decision making and practice. It is not clear how the current report card format could help inform practitioners.</td>
<td>Consideration should be given as to how the CEIC can implement a shared data system and develop a coherent and consistent system to make decisions based upon data being collected. Processes within and between CEIC intervention could be reviewed in order to increase the utility of data being collected and the purpose of collecting that information.</td>
</tr>
</tbody>
</table>

References

Author information

Dr Colm Walsh is a research fellow at Queen’s University Belfast with an interest in evidence-based practice, early intervention and violence prevention. He is a qualified community youth worker, and gained fifteen years of experience of implementing youth interventions, including the replication of evidence-based models in the community sector, before moving to Queen’s University Belfast.

Professor Gavin Davidson is the Praxis Chair of Mental Health at Queen’s University Belfast. He qualified as a social worker in 1995, and then worked in mental health services until moving to Queen’s University Belfast in 2008. His main research interests are in mental health, the role of adversity and trauma, and the use of compulsory powers.
Meaningful participation of young people in secondary data analysis

Lessons from the field

Leonor Rodriguez
Introduction

The benefits of promoting meaningful participation of young people in issues that are relevant to them have been identified. Oliver, Collin, Burns and Nicholas (2006) carried out an evaluation of the participation of young people in a youth advisory board to improve mental health services. The study found that participation had many benefits for young people, including resilience building, increasing control, connectedness, communication skills, confidence, self-esteem, self-efficacy and acted as a protective factor for mental health problems. Other studies have shown that participation of young people can increase their civic engagement by giving them voice in public affairs, policy making and connection within their community (Finn and Checkoway, 1998; Frank, 2006; Horgan, 2017). Young people can enhance research by providing reliable knowledge informed by their perspectives and experiences and can, in turn, benefit from research that understands their lives (Kennan and Dolan, 2017). This provides an opportunity for both adults and young people to learn from each other (Lundy, McEvoy and Byrne, 2011). Integrating the views of youth in research allows findings to be aligned with the priorities and experiences of young people and improves the impact and success of policies and programmes (Liebenberg, 2017). “Participatory dissemination” (Liebenberg, Ikeda and Jamal, n.d., p.1) with young people can bring “volume to their voices” and attract the attention of those who have the power and ability to improve their lives.

This article is based on a secondary data analysis of the impact of mentoring relationships on the lives of those who have the power and ability to understand their lives (Kennan and Dolan, 2017). The lead researcher explained the research to the BBBS programme at the time of the current study were invited to take part in an advisory group to explore their views on the relevance of these new findings and to determine if these findings were relevant to their current experience in the programme. The lead researchers, a professional video producer and two case workers were present at the time of the advisory group meeting. These young people were then asked to share their own experiences in the programme by creating a video to spread the messages of the research to other young people, stakeholders and the public. This process is described in more detail in the methodology section below. Video was selected as the medium for dissemination because it can be shared widely. In a participatory dissemination approach, young people can be involved in the selection of the dissemination method, and may select from other media such as creative writing and art (Liebenberg et al. n.d.).

Dissemination methodology

The dissemination process consisted of three phases. Firstly, contact was made with the BBBS programme in the West of Ireland to explain the research and invite them as gatekeepers for young people. This organisation purposefully selected young people according to their personalities to maximise their potential interest in the video. All parents and young people were provided with information sheets and consent forms before participating.

Secondly, the young people took part in a youth advisory group to increase engagement (Leitch and Mitchell, 2014). For two hours the young people were introduced to the research and the findings and were then asked to reflect upon these and to identify any times in their lives where a similar situation had happened to them. The lead researcher explained the research and findings in five slides using age-appropriate language, confirmed with the young people that they understood the ideas, and ensured the young people had adequate opportunity to comment or ask questions. The young people were then given blank story scripts and were divided into small groups to brainstorm their lived experiences or creative ideas in relation to the research and findings. These were then discussed as a group and the young people selected the most relevant ones for the story line. The professional video producer created a script based on the young people’s themes and suggestions.

The third stage consisted of a full day of filming. The young people were given scripts and they were asked to read them to ensure the language was suitable for a young person; they could make any changes they felt were needed. Following this, the young people were assigned a character, and scenes were filmed in the different locations to fit the storyline. The young people had an active role in selecting the locations of the film, as there were different options available near the location of the BBBS programme headquarters, however, it was decided to stay within the area to guarantee the safety of the young people, and to reassure parents of the whereabouts and safety of their children. The lessons learned from this experience are explored in detail in the following section.

Lessons from the field

This section describes some lessons learned in the process of meaningful participation and dissemination of the results of this secondary data analysis. This includes ethical and practical considerations to safeguard the integrity of these young people, and, in this innovative research experience, of involving a different cohort of young people to disseminate the findings of a study that they were not initially part of. It was also very important to encourage meaningful participation, as well as making it an enjoyable experience for the young people. It was important to emphasise to the young people the significance and responsibility of their dissemination work – that they had the potential to reach those with the power to affect positive change. Meaningful participation entails doing something that has a bigger purpose: young people believe in this purpose and in their capacity to help others (Oliver et al., 2006; Decker et al., 2011). The steps taken to achieve meaningful participation in the current study are described below.

Take the time to talk to young people and get to know them

Building relationships of trust with young people requires time and it is essential to ensure that their authentic views will emerge in the research process (Kennan and Dolan, 2017). One of the successes of this dissemination process was conducting an introductory advisory group with young people. This allowed the researchers and video producer to meet them, get to know their personalities and interests, and identify the potential role they could have based on their personalities, hobbies and talents. This also built good rapport as young people felt listened to and respected.

Identify young people’s strengths

Recognising the capacities of young people is an important part of youth participation (Oliver et al., 2008) and researchers need to assume young people have the capacity to express their views (Lundy et al., 2011). One young person, for example, was very talented at filming and had experience with cameras, and he had a very active role in filming the video. Young people have talents and abilities, and it is important to spend time finding out about them and how they can be utilised within the project.

Select a suitable environment for young people

Young people need to feel comfortable to express themselves, and the need for safe and uncensored spaces for young people to voice their concerns has been highlighted (Bradley, Deighton and Selby, 2004; Lundy et al., 2011).
It was crucial to engage adults that valued the involvement of the young people and were willing to act as enablers and supporters of this process, as deliberate attempts are necessary to support children to form and express their views confidently (Lundy et al., 2011). The young people were encouraged to complete the tasks but never forced to share more than they wanted. Work was also carried out in small groups where one adult had the role of listening to the young people, encouraging them to explore their lives and experiences and make them feel comfortable and validated. Regarding safety, it is essential that all adults involved with the group of young people comply with child safety guidelines, for example, by ensuring that they have appropriate Garda vetting. Research teams need to ensure child safety guidelines are adhered to before allowing recording teams, actors or any other support personnel to encounter young people.

Provide information sheets and consent forms
Researchers have a duty of care towards young people to ensure that the levels of distress or burden are reduced or eliminated (Kennan and Dolan, 2017). Consent forms are a well-established ethical standard (ibid, 2017) and young people and parents need to be clear about what their involvement entails, the risks and benefits and the time they are committing (Alderson and Morrow, 2011). In the case of video, young people and their parents need to consent to use their image on websites and in social media. Additionally, it is important to have written parental consent to allow young people to leave the venue on their own or with a different person at the end of the day, to ensure their safety. It is the researchers’ duty to ensure the young people return home safely.

Ensure the right to participate or withdraw
If any young person did not want to be on camera, they could participate by taking other roles such as recording, bringing props and setting scenery. All of the young people were asked to read the script and provide feedback. In the consent and information form the young people were informed that they could disengage from the task at any time without consequences for them personally or for the mentoring programme (Kennan and Dolan, 2017). Such reassurances reduce the pressure on young people and create a friendlier environment for them to be involved voluntarily (Lundy et al., 2011). One young person, for example, attended the advisory group but decided not to take part in any other stages of the process.

Bring all young people together at the same time
As this was a three-part process, finding a suitable date to bring all the young people together was a challenge. Considerations were given to important milestones such as school examinations. A day was selected when the young people could be relaxed and not under the pressure of other tasks. Some of the young people had family commitments and could not attend. However, they were given several options as to weekdays or weekends and a decision was reached by a majority. It was important to include several young people more the minimum number required, to allow for cancellations on the day.

Give careful consideration to providing gifts and rewards
Providing gifts and rewards to young people for their participation is a matter for ethical consideration. In this case, the young people were paid to take part in the advisory group and the video. The justification for this was they were working for the research project and, therefore, should receive fair payment for their time and commitment. All basic needs of young people should be covered according to the amount of time they spend carrying out the task, and this includes providing meals and coordinating transport to and from the venue if parents themselves cannot provide transport. In this case, the youth organisation took charge of transport for the young people and had direct contact with parents. The work of young people should be valued and is just as important as any other part of the project. It is important to include these costs within the overall dissemination budget, or to find alternative ways to thank young people for their time and involvement.

Conclusion
The video is a valuable tool to inform people about the importance of mentoring relationships and how they promote empathy in young people. The video has the capacity to reach a varied audience and is in a format that can be easily understood beyond academic research (Liebenberg et al., n.d.).

This paper provides an overview of our strategies to facilitate the engagement and meaningful participation of young people in the research dissemination process, and also the challenges and limitations we encountered. Even though there is strong evidence to support the benefits of encouraging participation of young people (Oliver et al., 2006; Finn and Checkoway, 1998; Frank, 2006; Kennan and Dolan, 2017; Lundy et al., 2011; Liebenberg, 2017), challenges remain. One of the limitations is it did not capture the benefits from involvement in the dissemination that the young people might have reported. However, we did not have the capacity to measure this within the time frame of our study. According to Frank (2006) some benefits can become immediately apparent while others may accrue over time; meaningful participation was encouraged but not necessarily achieved. Additionally, as this was a secondary data analysis, these young people were only involved in dissemination. Therefore, if they had been involved throughout the study, the benefits to these young people might have been greater.

More research is needed regarding the involvement of young people in secondary data analysis, as research has suggested that children need to have significant control and ownership of the research if it is to promote their empowerment (Kennan and Dolan, 2017). It is important to build their capacity for meaningful participation (Lundy et al., 2011) and in secondary data analysis, their involvement and empowerment may be, by its nature, limited.

There is an implicit risk in participatory research that young people’s views may be delivered effectively to relevant policy makers, but these views may not be acted upon (Kennan and Dolan, 2017). In the context of this study, efforts need to be made by the researchers to continue to disseminate the video, but also track its impact (Leitch and Mitchell, 2014; Horgan 2017), and inform young people about this to encourage them to continue engaging meaningfully in research. Hogan (2017) argued that policy should be grounded in children’s realities, and that policy and services should respond accordingly. In the case of this secondary data analysis, policy recommendations were drafted to improve the services Big Brothers and Big Sisters provide. It is also expected that this experience will
encourage researchers to foster meaningful participation in research, whether working with primary or secondary sources.

The research and video production were supported by the Children’s Research Network Prevention and Early Intervention Research Initiative Research Grant Scheme 2017-18.

References

Author information

Dr Leonor Rodriguez is a post-doctoral researcher at the UNESCO Child and Family Research Centre at the National University of Ireland, Galway. She has experience in health and clinical psychology working with families, children and young people that experience chronic illness. Leonor completed a masters in Clinical and Health Psychology in her native Costa Rica, and completed her PhD in the School of Psychology, National University of Ireland, Galway, entitled: Understanding Adolescent Adjustments to Maternal Cancer: A Study of Personal Experiences and Psychological Factors that Promote Adjustment.
How do we compare?
Locating findings from the Tallaght West Child Development Early Years Initiative within a wider international context

Nóirín Hayes and Judy Irwin
In educational research the use of comparative and meta-analysis methods allows researchers to draw conclusions about educational practices using a quantitative synthesis across studies. Such methods help draw conclusions about whether an intervention or approach, on balance, is effective or not, and explain variation in research findings by identifying any patterns or significant associations with features of interventions associated with greater or smaller effects (Higgins, 2016, p. 32).

While there has been significant growth in early education research in Ireland, it is still at the nascent stage when compared to other fields of education research and there are few research evaluations with the design potential to be studied comparatively.

This research summary reports a study that was devised to carry out a comparative analysis using a section of quantitative findings from the evaluation of the Tallaght West Child Development Initiative (CDI) Early Years programme (Tallaght West Childhood Development Initiative, 2017), along with datasets from the UK Effective Provision of Preschool Education (EPPE; Melhuish, Sammons, Siraj, Sylva, and Taggart, 2014) and Effective Pre-school Education Northern Ireland (EPNNI) studies. This internationally comparative study was funded by the Children’s Research Network Prevention and Early Intervention Research Initiative Senior Scholars Grant Scheme 2018. The CDI Early Years project was one element of a wider area-based initiative developed to meet the needs of young children and their families growing up in a disadvantaged area of Dublin. The CDI Early Years project provided a two-year programme for two-and-a-half to three-year-old children. It offered, among other features, a manualised programme that followed the High Scope Curriculum and a dedicated Speech and Language Therapist. The CDI evaluation (Hayes, Siraj-Blatchford, Keegan and Goulding, 2013) was designed to allow for comparison with elements of the EPPE and EPNNI datasets. This approach aimed to mitigate any shortcomings associated with a medium sample size and the short duration of the study. The evaluations of all three initiatives share common dimensions across a series of evaluation instruments. At the child level shared measures include dimensions of the British Abilities Scale (BAS II; Elliot, Smith and McCullough, 1996) and the Adaptive Social Behavior Inventory (ASBI; Hogan, Scott and Bauer, 1992); at the parent level they include the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997) and the Home Learning Environment Inventory (HLE - Adapted; Melhuish, Sylva, Sammons, Siraj-Blatchford and Taggart, 2001); and at setting level they include the Early Childhood Environment Rating Scales (ECERS - Revised; Harms, Clifford and Cryer, 1998). By quantifying the degree to which the outcomes at comparable points are similar (or different), the study intends to statistically extrapolate what the results might have been, had the CDI evaluation study extended for a longer period allowing data collection as the sample children progressed through into primary school.

While there are points of commonality across the evaluations, there are also differences. In the first instance, the CDI evaluation explored the impact of an early intervention programme, whilst the EPPE evaluation studied the impact of preschool provision in general. However, there are subsample data from the UK studies which relate specifically to Local Authority preschools, often in receipt of additional supports when compared to mainstream UK preschools. Secondly there is a ten-year difference in the data collection points; the preschool data for the EPPE study were collected in the early 1990s; in comparison, the CDI data were collected from 2008-2011. Finally, there is a substantial difference in the sample sizes across the studies.

We are currently comparing the datasets across the comparable dimensions and developing the analytical framework to test the extent to which the ambitions of the CDI design can be realised. If successful, locating the findings of the CDI evaluation within an international context will provide an expanded and enhanced context for interpreting and disseminating the CDI data nationally and internationally. Furthermore, the results will further to our understanding of what aspects of preschool experience contribute to positive outcomes for children and inform policy initiatives to enhance the impact of early childhood education and care. The findings will be disseminated through publication and relevant conferences.

References

Author information

Professor Nóirín Hayes is visiting professor at the School of Education, Trinity College Dublin and professor emerita at the Centre for Social and Educational Research, Dublin Institute of Technology. Working within a bio-ecological framework of development and through a child rights lens, Nóirín researches early childhood education and care pedagogy and policy. She is convenor of the Researching Early Childhood Education Collaborative [RECEC] at Trinity College and co-editor of Research and Evaluation in Community, Health and Social Care Settings: Experiences from Practice (Routledge, 2018) and In Search of Social Justice: John Bennett’s Lifetime Contribution to Early Childhood Policy and Practice (Routledge, forthcoming).

Judy Irwin has a degree in psychology and sociology from Queens University Belfast. Following graduation, she worked in East Africa returning to Galway to work as coordinator with the Refugee Information Service. While there...
she completed a master’s degree in international human rights law (2005) followed by an MSc in applied psychology (2009). She has worked as a researcher on a variety of projects and is completing a four-year training course in child and adolescent psychotherapy. Judy is co-author, with Nóirín Hayes, of Listen Up: Reflections on the CDI/HSE Speech and Language Services in Tallaght West (CDI, 2016).

Investigating associations between maternal well-being and infant dietary intake in a low-income setting

Sarah Buggy, Kate O’Neill, Patricia M. Kearney and Karen Matvienko-Sikar
Background

Maternal well-being is associated with child health and developmental outcomes, including obesity risk (Woo Baidal et al., 2016). Such associations may be due to factors such as child feeding practices, though findings are inconsistent (McPhie, Skouteris, Daniels and Jansen, 2014). Being of low socio-economic status is associated with higher risk of poor child feeding and dietary intake (Zarnowiecki, Dollman and Parletta, 2014; Darmon and Drewnowski, 2008), which in turn is an important predictor of childhood obesity (Perry et al., 2015). There is mixed evidence suggesting that maternal stress and depression impact on weight outcomes (Tate, Wood, Liao and Dunton, 2015) and dietary intake (O'Connor et al., 2017), possibly through impacting the parent-child feeding relationship (Webb, Zimmer-Gembeck, Scuffham, Scott and Barber, 2018). Maternal self-esteem influences the parent-child relationship but has not been investigated in relation to weight outcomes (Benton, Skouteris and Hayden, 2015).

Aim

The aim of this study is to examine the effect of stress, depression and self-esteem on child dietary intake in a low socio-economic group.

Method

The Preparing for Life (PFL) study was a longitudinal, randomised controlled trial aimed at improving the school-readiness of children in several disadvantaged communities in North Dublin. We used data from the PFL study (Northside Partnership, Doyle and UCD Geary Institute PFL Evaluation Team, 2018) that were collected when study children were eighteen months old. The following data were collected by trained interviewers using Computer Assisted Personal Interviewing software: parenting stress (Parenting Daily Hassles Scale (PDH; Crnic and Greenberg, 1990) using Frequency and Intensity subscales); depression (Edinburgh Postnatal Depression Scale (EPDS; Cox, Holden and Sagovsky, 1987) with scores of nine or over representing clinically elevated depressive symptoms); and self-esteem (six-item Rosenberg Self-Esteem Scale (RSE; Rosenberg, 1965)); as well as demographic information. Child dietary intake was assessed using a Food Frequency questionnaire (FFQ) adapted from the Lifeways Cross-Generation Cohort Study (Shrivastava et al., 2013). Binary ‘healthy’ or ‘unhealthy’ categorical variables were created to represent whether children were or were not meeting Irish dietary recommendations for toddlers (Health Promotion Unit of the Department of Health and Children, 2004) for each food group (protein, fruit and vegetables, dairy, protein, and sugars/fats - see Table 1). A composite ‘Overall Healthy Diet’ binary variable was also created to quantify the number of children meeting all dietary recommendations listed above.

Descriptive statistics were used to explore associations between variables of interest and each dietary outcome variable using t-tests, chi square tests and Mann Whitney tests. Multivariable logistic regressions were conducted to further explore relationships between exposure and outcome variables and were adjusted for relationship status, household income and maternal age. Analyses were carried out using SPSS Version 24.

Findings

A total of 225 participants provided data at eighteen months, representing a response rate of sixty-eight per cent of the initial sample of 322. The key results are presented in Table 2. Seventy participants reported having maternal depression. Mean PDH Frequency score was 33.83, and median PDH Intensity score was 26. Median RSES score was 14. Overall, only two

| Table 1: Coding of FFQ based on nutrition guidelines to create outcome variables |
|-------------------------------|-----------------|-----------------|
| Outcome variable | Departmental guidelines | PFL FFQ coded as ‘Healthy’ |
| Grain | 4 servings | 4-5 times per day |
| Fruit and vegetables | 2-4 servings | Fruit >1 time per day |
| | | Vegetables >1 time per day |
| Protein | 2 small servings | 2-3 times per day |
| Dairy | 3 servings | 2-3 times per day |
| Sugars and fats | Less than once per week | Once per week or less |
| Overall Healthy Diet | Meeting grain, fruit and vegetable, protein and dairy guidelines | Scoring ‘healthy’ for grain, fruit and vegetable, protein and dairy outcome variables |

| Table 2: Demographic characteristics |
|-------------------------------|-----------------|
| Variable | N % |
| Mean maternal age | 28.83 (5.93) |
| Relationship status | 54 (24.1%), 42 (38.8%), 87 (38.8%), 41 (18.3%) |
| Median weekly disposable income | €193.37 |
| Score >9 on EPDS | 70 (31.1%) |
| Overall healthy diet | 2 (0.9%) |
children (0.9%) were reported to have a diet meeting all dietary requirements at eighteen months. None of the psychological variables significantly predicted any dietary intake outcomes.

Conclusion

Dietary recommendations were met by less than one per cent of participants. This corroborates research on the poorer diet quality of people in low socio-economic brackets (Harrington et al., 2011; Kunaratnam, Halaki, Wen, Baur and Flood, 2018). As this analysis did not produce significant associations between maternal well-being and dietary intake, socio-economic disadvantage may be a more salient factor in child dietary intake than maternal psychological factors and may explain the linkages between maternal well-being and infant feeding within the literature. This may occur due to financial constraints on the type of food available and consumed in the home, or differences in feeding practices and beliefs among mothers of different socio-economic groups (Zarnowiecki et al., 2014). Maternal stress, depression and self-esteem may also influence weight outcomes through other weight-related behaviours, but not dietary intake.

References

Author information

Sarah Buggy is a student in the masters in public health programme in the School of Public Health, University College Cork. Sarah’s interests include health inequities, reproductive health and health service reform. Sarah graduated with a BA in applied psychology in 2013, after completing a final year project on sexual functioning. Sarah then worked as a research assistant with the Centre for Pain Research in the National University of Galway Ireland. Sarah received funding from the Children’s Research Network Prevention and Early Intervention Research Initiative Research Grant Scheme to complete this research as part of her master’s degree in public health dissertation.

Kate O’Neill graduated with a BSc in public health and health promotion in 2013 and then obtained a master’s degree in epidemiology at Cambridge University. Kate is currently completing her PhD at the School of Public Health, University College Cork. Her PhD research explores the economic burden of diabetes and the implementation of cost-effective strategies in Ireland. Kate’s research interests and expertise lie in the area of chronic disease epidemiology, specifically obesity and diabetes, and quantitative research methods.

Professor Patricia Kearney is a medical graduate of University College Cork and completed her MPH and PhD in Tulane University School of Public Health and Tropical Medicine. She has worked as a clinical research fellow at the University of Oxford, Trinity College Dublin and University College Cork. Patricia has extensive experience in clinical trials, large scale epidemiological research and translation of research into improving health. She was awarded a prestigious Health Research Board Research Leader Award in 2013 to undertake a project on a population approach to the prevention and control of diabetes and appointed as a research professor in University College Cork. She is currently professor of epidemiology.
Children's Research Digest Vol. 5 (3)

Dr Karen Matvienko-Sikar is a Health Research Board funded post-doctoral research fellow in the School of Public Health, University College Cork. Karen is a health psychologist currently working on development, implementation and evaluation of an infant feeding intervention to prevent childhood obesity. Karen’s research focuses on maternal and child health particularly in terms of maternal stress, childhood obesity, intervention development and outcome assessment. Karen has received a BA, MA, and PhD in applied psychology in University College Cork. Karen is the principal investigator of a project examining associations between maternal well-being and infant dietary intake in a low-income setting which was funded by the Children’s Research Network Prevention and Early Intervention Research Initiative Research Grant Scheme 2017-18.

Does early home environment influence basic numeracy skills?

The Preparing for Life Study

Victoria Simms, Abbie Cahoon, Aideen McParland, Nicola Doherty and Camilla Gilmore
This study aims to address an open question about the longitudinal relationship between the early home environment and the development of children’s numeracy skills. Data analysis is currently on-going thus this report provides a summary of the rationale and methods of the study.

What do we know about the home environment and numeracy skills?

Predictors of early educational outcomes for children have been widely researched within the field of educational, cognitive, and developmental psychology for many decades (Sirin, 2005). Previous research has suggested that the quality of the home environment is not only important, but predictively linked to children’s school readiness by assisting low-income parents in developing skills for their child starting school. Researchers compiled a multi-dimensional programme that targeted a range of child outcomes including; cognitive development, physical health and motor skills, socio-emotional development, approaches to learning, and language development. The PFL programme was evaluated using a randomised controlled trial (RCT) design, with participants randomly assigned to either a low or high treatment group. Families in both groups (low and high treatment) received additional home visits from a mentor and training through a parenting scheme. The home environment was measured in participating families when the study child was six, eighteen, thirty-six, and forty-eight months of age. Early numeracy skills were measured when the child was aged forty-eight months.

The Preparing for Life study

The Preparing for Life (PFL) programme aimed to improve school readiness by intervening during pregnancy and working with families until children started school (Doyle, Cheevers, Finnegan, McEntee and McNamara, 2009). Based upon key theories of child development this programme was designed to improve children’s school readiness by assisting low-income parents in developing skills for their child starting school. Researchers compiled a multi-dimensional programme that targeted a range of child outcomes including; cognitive development, physical health and motor skills, socio-emotional development, approaches to learning, and language development. The PFL programme was evaluated using a randomised controlled trial (RCT) design, with participants randomly assigned to either a low or high treatment group. Families in both groups (low and high treatment) experienced support from a key worker and received additional preschool and health related information. The high treatment group received additional home visits from a mentor and training through a parenting scheme. The home environment was measured in participating families when the study child was six, eighteen, thirty-six, and forty-eight months of age. Early numeracy skills were measured when the child was aged forty-eight months.

The current study

This study used the PFL dataset (Northside Partnership, Doyle and UCD Geary Institute PFL Evaluation Team, 2018), which provides unique longitudinal data, to explore the relationships between home environment in the development of numeracy skills. To date, no other study that investigates early numeracy skills has included home environment measures from infancy. The overall aims of the current study were:

1. to identify if group membership (high or low treatment group) predicts numeracy skills, as measured by the British Ability Scale, Second Edition: Early Number Concepts scale (BASII; Elliott, Smith and McCulloch, 1997);
2. to investigate if home environment scores measured in infancy, toddlerhood and early childhood predict numeracy skills and,
3. to investigate if home environment measures predict numeracy skills after controlling for socio-economic status.

Status of the current study

The results are currently in preparation and are being submitted to Frontiers in Psychology for peer review. This research is supported by the Children’s Research Network Prevention and Early Intervention Research Initiative Research Grant Scheme 2017-18.

References

Sirin, S. (2005) Academic Achievement for Children (Anders et al., 2012; Melhuish et al., 2008).

Typically, home environment has been conceptualised as a proxy of socio-economic status (SES) when predicting early educational outcomes for children. This is due to SES, as a domain, capturing many aspects of the home environment, for example: lone parent status, parental employment, household composition, family income, and parental education. Indeed, each of these SES indicators have also been found to impact the educational outcomes of a child (see for example, Biblarz and Raftery, 1999; Bradley and Corwyn, 2002). However, more recently, studies have found that nuanced measures of the home environment are significant predictors of reading and maths achievement for children (Anders et al., 2012; Melhuish et al., 2008).

Interestingly, recent research has shown the quality of the home environment is specifically important for the development of early number skills, thus supporting the argument for home environment to be considered independently from other SES proxies. For instance, Kleemans, Peeters, Segers and Verhoeven, 2012 found that parent-child numeracy activities and parents’ numeracy expectations are unique and important predictors of early numeracy, after controlling for linguistic and cognitive child factors. This emphasises the importance of home numeracy experiences on early numeracy skills development Huntsinger, Jose and Luo (2016).

Bakermans-Kranenburg, Van IJzendoorn and Bradley, 2005; Melhuish et al., 2008).

Author information
Dr Victoria Simms is a reader in developmental psychology at Ulster University and is the research director for the School of Psychology. Abbie Cahoon is completing her PhD at Ulster University and will take up a post-doctoral position at University College Dublin in November 2018. Dr Aileen McParland is a lecturer in psychology in University College Dublin. Dr Nicola Doherty is a consultant paediatric psychologist for the Western Trust, Northern Ireland. Dr Camilla Gilmour is a reader in mathematical cognition at Loughborough University and holds a Royal Society Dorothy Hodgkin Fellowship.

Children’s own priorities for their school readiness

More than just a checklist of skills and behaviours

Christine O’Farrelly, Aibhe Booth, Mimi Tatlow-Golden and Beth Barker
Background to the Children’s Thoughts about School Study

The Children’s Thoughts about School Study (CTSS) was a sub-study of the Preparing for Life (PFL) evaluation. PFL tested the effectiveness of an intensive parenting programme in promoting the school readiness of children living in a socio-economically disadvantaged community in North Dublin. The programme was developed in response to evidence that many children from the catchment area were starting school without the socio-emotional, cognitive and behavioural skills needed to navigate school successfully (Doyle, McIntee and McNamara, 2012). The PFL randomised controlled trial is one of the most extensive studies of its kind, utilising a state of the art design incorporating a multi-informant, multi-domain and multi-measure outcome battery. The CTSS sought to complement the main PFL evaluation by examining children’s own priorities and concerns about school readiness. Supported by the Children’s Research Network Prevention and Early Intervention Research Initiative Research Grant Scheme (2017-18), we were able to undertake a rigorous and detailed analysis of the CTSS data (Northside Partnership, Doyle, UCD Geary Institute PFL Evaluation Team, 2018) in order to distil children’s school readiness priorities from their accounts of their early school experiences. A full account of this study and its findings is currently under review for publication, and here we present a brief summary of the background and highlights of this secondary analysis of the CTSS data.

Why might children’s views be valuable in understanding adjustment to school?

Despite growing international investment in school readiness (Sabol and Pianta, 2017), there is no one agreed definition of what school readiness means. Rather, the term has caused confusion and provoked debate (Britto, 2012; Kagan, 2007) and there is often little commonality in the outcome measures used to gauge an intervention’s effectiveness. For example, some studies, such as PFL, use a combination of measures and informants including teacher and parent reports of children’s school readiness alongside direct assessments of children’s skills; while others may report on just one aspect of children’s functioning (for example, cognitive ability). One means of interrogating the suitability of outcome measures is to identify what is meaningful to service users themselves (see for example, Crawford et al., 2011; Orr et al., 2015; Singh, 2017). Yet, despite trends to incorporate stakeholder perspectives into evaluations of complex interventions (Moore et al., 2015; Pawson and Tilley, 1997), those targeting children’s lives tend to privilege adults’ observations over children’s priorities and experiences. This is despite the United Nations Convention on the Rights of the Child (1989) asserting children’s right to a say in matters that affect their lives. Studies also show that young children provide reliable and valid information in clinical, courtroom and education settings, which adds uniquely to the understanding provided by adults and adults, provided that appropriate methods are used (Brown and Lamb, 2015; Harrison, Clarke and Ungerer, 2007; Luby, Belden, Sullivan, and Spitznagel, 2007). Although valuable research has been undertaken exploring children’s experience of the transition to school (see for example, O’Kane, 2007), few studies have examined the experiences of children growing up in socio-economically disadvantaged communities.

How did the Children’s Thoughts about School Study work?

Forty-two children (aged four to five years) from a single school in the PFL catchment community participated in a multi-method interview approximately seven months into their first school year. The protocol was designed in consultation with local schools and was piloted to ensure its suitability with young children. Parents were given an information pack including an illustrated booklet for their child. Children whose parents had provided consent were then invited by the researcher to participate in a one-to-one interview in a familiar place, such as the library. Interviews were conducted concurrently (two at a time), and children were interviewed separately. First, the interviewer used the illustrated information booklet to explain to the child the research and their participation in it (i.e. to explore assent). To help address power imbalances the researcher positioned themselves as an ‘interested other’ who wanted to learn more about what school was like. To get a broad picture of children’s perceptions of early school experiences and adjustment to school we asked children to:

(1) complete a structured measure of school liking and avoidance (School Liking and Avoidance Questionnaire; Ladd and Price, 1987);

(2) complete a structured interview about nine potentially challenging everyday school scenarios (Pictorial Measure of School Stress and Wellbeing; Murray and Harrison, 2005);

(3) offer advice to a fictional character, ‘Riley Rabbit’, who was starting school for the first time;

(4) draw and describe a picture of themselves in school.

Using the principles of thematic analysis, we developed a thematic framework of children’s early school experiences. Children’s priorities were then distilled from themes and subthemes to extract essential components of school readiness. Further information on the analytic strategy is included in the full manuscript (currently in review).

What are children’s priorities for their school readiness?

Overall, children’s accounts suggested that school readiness is a multi-faceted construct; it includes a range of capacities and skills that are underpinned by motivation, is largely social in nature, and influences and is influenced by its surrounding environments. In this way, children’s responses strongly endorsed the view that school readiness is “more than a checklist of skills and contextually isolated knowledge and more than a set of behaviours that enable children to be considered as compliant in the classroom” (Dockett and Perry, 2002, p. 84).

Twenty-five school readiness priorities were distilled from the data. These encompassed children’s enthusiasm for school, their sense of self-efficacy, traditional academic skills, physical independence, self-regulation skills, an ability to navigate peer interactions, a capacity to think and play creatively, supportive peer interactions, as well as a supportive and playful school environment, and strong connections between school and family life. Table 1 presents each priority alongside a brief description. Importantly, children endorse the significance of many of the core academic skills considered as part of school readiness and captured by batteries such as those used in the PFL trial. However, they also highlight targets that are overlooked (such as motivation, which includes children’s school liking and efficacy) that could aid greater prediction of children’s school success. It would also be instructive for future research to consider investigating children’s perceptions about school readiness and anticipated adjustment to school prior to school commencement. Although these results require replication across more diverse samples, they help to provide a starting point in affording children’s priorities a place in the policy and practice landscape that shapes their lives.
<table>
<thead>
<tr>
<th>Priority</th>
<th>Brief Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. School</td>
<td>Feel positively about school; like and look forward to school</td>
</tr>
<tr>
<td>2. Enthusiasm for learning</td>
<td>Enthusiastic and curious about learning</td>
</tr>
<tr>
<td>3. Self-efficacy</td>
<td>A strong belief in their own competence, even in the face of challenges</td>
</tr>
<tr>
<td>4. Write</td>
<td>Able to hold a pencil, trace, and write letters and numbers</td>
</tr>
<tr>
<td>5. Count</td>
<td>Numeracy skills for counting and solving number problems</td>
</tr>
<tr>
<td>6. Draw</td>
<td>Can draw simple forms (e.g. lines and shapes) as well as more creatively</td>
</tr>
<tr>
<td>7. Read</td>
<td>Early literacy skills such as letter knowledge / recognition and letter / sound correspondence</td>
</tr>
<tr>
<td>8. Independence in toileting</td>
<td>The confidence and skill to maintain dryness, ask to use the toilet, and complete toileting routines</td>
</tr>
<tr>
<td>9. Run and balance</td>
<td>Maintain balance, run, and avoid frequent falls, especially in the playground</td>
</tr>
<tr>
<td>10. Regulate behaviour</td>
<td>Control impulsive behaviour (e.g. being able to wait your turn, inhibit aggression)</td>
</tr>
<tr>
<td>11. Regulate emotion</td>
<td>Control emotions especially anger and frustration</td>
</tr>
<tr>
<td>12. Cope with separation</td>
<td>Maintain a sense of security in the absence of parents and family</td>
</tr>
<tr>
<td>13. Regulate attention</td>
<td>Ignore distractions, adjust attention, and stay on task</td>
</tr>
<tr>
<td>14. Follow directions</td>
<td>Listen to the teacher and follow rules and directions</td>
</tr>
<tr>
<td>15. Establish and maintain friends</td>
<td>Skills to make (e.g. introduce yourself, ask to play) and maintain friendships</td>
</tr>
<tr>
<td>16. Avoid rejection</td>
<td>Social skills to avoid rejection (e.g. control aggression, ability to approach peers and join play)</td>
</tr>
<tr>
<td>17. Resolve conflict</td>
<td>Adaptive coping skills in the face of conflict, including the ability to seek out external support when necessary</td>
</tr>
<tr>
<td>18. Think and play creatively</td>
<td>Capacity to use imagination for pleasure, learning, and exploration</td>
</tr>
<tr>
<td>19. Access to friends</td>
<td>Opportunity to develop and seek out friendships for enjoyment and support</td>
</tr>
<tr>
<td>20. Positive social climate</td>
<td>Positive social climate including an absence of victimisation and social distress</td>
</tr>
<tr>
<td>21. Regular access to play and supportive outdoor space</td>
<td>Regular access to both guided and self-directed play in classroom and outdoor settings and easy access to supportive adults when necessary</td>
</tr>
<tr>
<td>22. Clear rules and routines</td>
<td>Organised classrooms with predictable routines and clear rules to guide behaviour</td>
</tr>
<tr>
<td>23. Supportive teacher relationships</td>
<td>Warm and encouraging teachers who provide support with learning and peer interactions</td>
</tr>
<tr>
<td>24. Strong family school involvement</td>
<td>Positive connections between schools and families including opportunities for families to be involved in children’s school lives</td>
</tr>
<tr>
<td>25. Strong community networks</td>
<td>Access to wider family and social networks and support (e.g. for after-school care)</td>
</tr>
</tbody>
</table>

References

Author information
Dr Christine O’Farrelly is a research associate at the Centre for Psychiatry, Imperial College London.

Ailbhe Booth is a PhD candidate at the University College Dublin School of Psychology and Geary Institute for Public Policy.

Dr Mimi Tatlow Golden is co-director of the Centre for Children and Young People’s Wellbeing and a lecturer in developmental psychology and childhood at the Open University.

Beth Barker is a PhD student at the Centre for Psychiatry, Imperial College London.

The experiences and approaches of mentors in the Big Brothers Big Sisters programme Lessons for research, policy and practice

Bernadine Brady and Charlotte Silke
The core component of youth mentoring programmes, such as the Big Brothers Big Sisters (BBBS) programme, is a ‘match’ between an adult volunteer (mentor) and a young person (mentee). Youth mentoring is an approach that is firmly located in prevention and early intervention. It aims to strengthen the social support available to children who lack the presence of significant adults in their lives and thus, to facilitate the positive development and well-being of children and young people (Brady, Dolan and Canavan, 2017; Dolan and Brady, 2011).

Mentoring has been found to support children in coping with stress and other risks occurring in their social environments and to prevent the escalation of problems. The results of evaluations of mentoring programmes provide clear evidence that involvement in youth mentoring relationships can result in benefits for young people (Dolan et al., 2011; DuBois, Portillo, Rhodes, Silverthorn and Valentine, 2011). But, the research indicates that not every mentoring programme will produce these results; the most successful mentoring programmes are those that foster the development of close, trusting and safe relationships between mentors and mentees. Such programmes have been shown to adhere to evidence-based practices such as rigorous screening of volunteers, creating matches based on shared interests, providing training to mentors and ensuring regular supervision of matches (Stelter, Kupersmidt and Stump, 2018). Ongoing availability of staff support and opportunities for mentors and youth to participate in shared activities are also helpful in facilitating bonds to develop (Garringer, Kupersmidt, Rhodes, Stelter and Tai, 2015). A range of research studies have shown that specific factors associated with the approach or style of volunteer mentors also influence whether mentoring is beneficial for young people (Brumovská, 2017; Morrow and Styles, 1995).

Funding from the Children’s Research Network Prevention and Early Intervention Research Initiative Senior Scholars Grant Scheme in 2018 has enabled us to explore these issues, using qualitative and quantitative data collected as part of a large-scale evaluation of the BBBS programme in Ireland (Dolan et al., 2011). A rich body of research data was gathered from mentors as part of the original evaluation of the BBBS programme but, due to time constraints, was not analysed during the evaluation or since it was completed. The current mixed-methods study will provide a valuable insight into the perspectives of mentors regarding the training and support available to them from the BBBS programme. It will allow for an exploration of their motivations for mentoring, how this motivation was sustained or reduced over the course of their mentoring match, and how programme staff supported them in dealing with challenges. The study will also provide an insight into the styles or approaches taken by mentors and explore how varying styles impacted on relationship dynamics and outcomes for young people. It will be the first study of this nature in an Irish context and will contribute to the international knowledge base in relation to youth mentoring interventions. The report and academic publications from the current study will be disseminated through various channels, including the websites of the Global Youth Mentoring Network, European Centre for Evidence Based Mentoring and Chronic of Evidence Based Mentoring. The findings will be presented at a range of conferences and seminars, including the Foróige / Global Youth Mentoring Network conference Mentoring Young People Facing Adversity in Dublin in October 2018, which will provide an opportunity for practitioners and policy makers to inform their practice, based on the emerging findings and recommendations.

References

- Brumovská, T. (2017) Initial Motivation and its Impact on Quality and Dynamics in Formal Youth Mentoring Relationships: A Longitudinal Qualitative Study (Doctoral dissertation), School of Political Science and Sociology, National University of Ireland, Galway.

Author information

Dr Bernadine Brady is a lecturer at the School of Political Science and Sociology, National University of Ireland, Galway and a senior researcher with the UNESCO Child and Family Research Centre at the National University of Ireland, Galway. Bernadine has particular expertise in relation to youth mentoring, participation and evidence-based practice in youth work. She is co-founder of the Global Youth Mentoring Network and co-author of A Guide to Youth Mentoring: Providing effective social support (Jessica Kingsley, 2012). Bernadine is currently Principal Investigator on the Irish Research Council funded study Empathy, caring and connection among early adolescents.

Dr Charlotte Silke is a post-doctoral researcher at the UNESCO Child and Family Research Centre at the National University of Ireland, Galway. Charlotte is working on the Irish Research Council funded Youth Empathy and Social Values (YES) project, and on the secondary analysis of relational dynamics in youth mentoring relationships which is funded by Children’s Research Network Prevention and Early Intervention Research Initiative Research Grant Scheme 2017-18. Charlotte’s PhD from the School of Psychology at the National University of Ireland, Galway focused on investigating the factors that predict public mental health stigma and assessing the effectiveness of a normative anti-stigma intervention among adolescents.
Population Triple P in Ireland
Does it work?
Orla Doyle, Mary Hegarty and Conor Owens
Introduction

Parenting practices and behaviours play an important role in shaping various aspects of children's development (Ermisch, 2008; Marmot et al., 2010). Research has found that parenting practices characterised by positive displays of affection and consistent disciplinary strategies are related to a child's psychosocial development, while parenting which lacks control or warmth is associated with a greater number of behavioural issues (Baumrind, 1978; Rose, Roman, Mwaba and Ismail, 2018). Parenting interventions can be an effective tool for improving parenting practices (Barlow, Parsons and Stewart-Brown, 2002) and are typically provided on an individual, case-specific basis. Yet offering parenting programmes on a universal scale has the potential to eliminate stigma surrounding parenting interventions, as well as serving as a preventative mechanism (Prinz, Sanders, Shapiro, Whittaker and Lutzker, 2016). Triple P is an example of a parent training intervention which adopts a population approach and uses a multi-method delivery system (Sanders, 2008).

A systematic review of 101 Triple P studies found evidence of significant short and long-term effects for child well-being outcomes, as well as parenting practices and satisfaction, and parental relationships (Sanders, Kirby, Tellegen and Day, 2014).

Method

The aim of this study was to evaluate the effectiveness of implementing Triple P at a population level in Ireland on the prevalence of children's social, emotional, and behavioural problems as measured by the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997). The Triple P intervention was offered to all parents of children aged between four and eight years in two intervention regions over a thirty-month period between 2010 and 2013. The programme was delivered by the Longford/Westmeath Parenting Partnership (LWPP) using a partnership model comprising statutory, community, and voluntary sector organisations. Four of the five Triple P levels were provided including a media campaign, one-off seminars and discussion groups, and multi-week group sessions. Parents could choose how many and which levels of Triple P to participate in. A propensity score matching (PSM) differences-in-differences (DID) method was used to compare two intervention regions (Longford and Westmeath) and two comparison regions (Tipperary North and Tipperary South) matched on socio-demographic characteristics. By combining DID with PSM, we utilised the advantages of both techniques, as DID helps to differentiate out permanent (time invariant) confounders and PSM helps to capture transitory shocks (and thus balance the covariates). This method was first introduced by Heckman, Ichimura and Todd (1997). We first estimated the propensity score using a probit function to calculate the probability of being in the intervention sample based on observable covariates. The propensity score allowed us to match treated and untreated respondents according to one single metric. We used kernel matching which allowed a large amount of data to be retained, while bias was reduced by assigning larger weights to the untreated units which were the closest matches to the treated units. The Epanechnikov kernel was employed and the optimal bandwidth was determined using Silverman's rule of thumb. Separate propensity score models were estimated for both time points. Next, we estimated the DID models using OLS regressions for the continuous outcomes and Linear Probability Models for the binary cut-off scores, and applied the average weights obtained from the propensity score in each case. Each DID model included a treatment status indicator (intervention or comparison sample), a time indicator (pre- or post-intervention sample), an interaction between time and treatment status, and a set of control variables. Please see the full paper for a detailed explanation of this method (Doyle, Hegarty and Owens, 2018).

A population survey was administered in both regions before (between February and April 2010) and after (between March and May 2013) programme implementation. Participants were sampled from 302 Electoral Districts across the four regions and a random probability sampling method was then used to select the sample of eligible households using quotas based on socio-economic group (Fives, Pursell, Heary, Nic Gabhainn and Canavan, 2014). The pre-intervention sample included 1,501 and 1,495 parents of children aged four to eight years in the intervention and comparison regions respectively. The post-intervention sample included 1,521 and 1,544 parents respectively. These samples represented seventeen to twenty per cent of all families with children between the ages of four and eight years in the counties.

Results

Table 1 presents the mean scores of the intervention and comparison samples at the pre and post intervention periods, as well as the results of the PSM DID models. There were significant reductions in the prevalence rates of social, emotional, and behavioural problems in the two intervention regions compared to the two comparison regions. Children in the intervention sample experienced lower total difficulties, conduct problems, and they were less at risk of scoring within the borderline/abnormal range for total difficulties, conduct problems, and hyperactivity. The programme reduced the proportion of children scoring within the borderline/abnormal range by 4.7 per cent for total difficulties, 4.4 per cent for conduct problems, and 4.5 per cent for hyperactivity in the total population. There were no impacts on peer problems or on positive behaviours as measured by prosocial behaviour.

Conclusions

This study provides some evidence that a universal system of parenting support may result in reductions in the prevalence rates of child social, emotional, and behavioural problems at a population level. This was achieved using Triple P, a universal parenting programme which was implemented at multiple levels by a collaborative partnership. The programme reduced the proportion of children classified as having borderline/abnormal problems, as well as reducing the overall level of difficulties. The results reported here differ from the one other comparable population study of Triple P in Australia which also adopted a quasi-experimental methodology and measured similar outcomes, and found that the effects were limited to total difficulties and emotional difficulties (Sanders et al., 2008). Possible explanations for differences in the number of treatment effects include programme developments over time. These results add to the evidence base for the science of population-based approaches to parenting.

A full-length version of this paper has been published as: Doyle, O., Hegarty, M. Owens, C. (2018) Population-based Parenting Programme to Reduce the Prevalence of Child Socio-emotional and Behavioural Problems: Differences-in-Differences Study, Prevention Science, 19 (6), pp. 772-81. This research was supported by the Children's Research Network Prevention and Early Intervention Research Initiative Research Grant Scheme 2017-18.
Table 1: Mean Behavioural Scores and Results

<table>
<thead>
<tr>
<th></th>
<th>Pre-Intervention</th>
<th>Post-Intervention</th>
<th>Mean Difference</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDQ Continuous Scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total difficulties</td>
<td>8.44</td>
<td>7.94</td>
<td>-0.788</td>
<td>0.007</td>
</tr>
<tr>
<td>Emotional symptoms</td>
<td>1.83</td>
<td>1.82</td>
<td>-0.266</td>
<td>0.008</td>
</tr>
<tr>
<td>Conduct problems</td>
<td>1.76</td>
<td>1.63</td>
<td>-0.183</td>
<td>0.033</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>3.36</td>
<td>3.16</td>
<td>-0.177</td>
<td>0.128</td>
</tr>
<tr>
<td>Peer problems</td>
<td>1.49</td>
<td>1.33</td>
<td>-0.152</td>
<td>0.060</td>
</tr>
<tr>
<td>Prosocial scale</td>
<td>7.86</td>
<td>8.23</td>
<td>-0.039</td>
<td>0.691</td>
</tr>
<tr>
<td>SDQ Proportion in borderline/abnormal range %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total difficulties</td>
<td>17.0</td>
<td>15.0</td>
<td>-0.047</td>
<td>0.009</td>
</tr>
<tr>
<td>Emotional symptoms</td>
<td>18.0</td>
<td>16.9</td>
<td>-0.033</td>
<td>0.058</td>
</tr>
<tr>
<td>Conduct problems</td>
<td>27.3</td>
<td>24.4</td>
<td>-0.044</td>
<td>0.042</td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>16.1</td>
<td>14.4</td>
<td>-0.045</td>
<td>0.015</td>
</tr>
<tr>
<td>Peer problems</td>
<td>21.5</td>
<td>19.7</td>
<td>-0.027</td>
<td>0.173</td>
</tr>
<tr>
<td>Prosocial scale</td>
<td>15.2</td>
<td>11.0</td>
<td>-0.022</td>
<td>0.179</td>
</tr>
</tbody>
</table>

Columns (1), (2), (3), (4) show the unweighted raw scores of the intervention and comparison groups in the pre- and post-intervention periods. Column (5) shows the difference-in-difference impact from the kernel PSM DID models which includes a treatment status indicator (intervention or comparison), a time indicator (pre- or post-intervention), an interaction between time and treatment status, a set of controls (child age, child gender, respondent’s relationship to the child, Irish-born or not, employment status, educational attainment, social class, rurality, housing tenure, and aggregate ED), and matching weights applied.

References

The Children's Research Digest is a publication of the Children's Research Network for Ireland and Northern Ireland. The Network is a membership organisation that aims to support the research community to better understand and improve the lives of children by:

- Creating and maintaining an inclusive, independent, non-profit network
- Sharing information, knowledge, experience, learning and skills.

Since its launch in 2010, the Network has approximately 300 members from academia, government, voluntary and independent sectors of children's research on the island of Ireland. The Network seeks to build bridges between researchers in the various sectors of the community and develop structures to promote the sharing of information, learning and good practice. We hope that the Children's Research Digest will contribute towards the sharing of such learning by members both within the wider research community.

Other ways in which learning is shared include an annual conference, thematic sub-groups, seminars throughout the island, PhD symposium and project days where links are built between practitioners and researchers.

The Network accepts new members at any time of the year. As a member you are entitled to reduced cost or free attendance at training sessions and other events, mailings on upcoming events, news and jobs in the sector, membership of sub-groups and the possibility to publish in the Children's Research Digest. We also produce a Members Directory with listings of names, organisations, contact details and research interests of members. Annual membership is currently:

- €30 / £25 full-time employed
- €20 / £17 part-time employed or retired
- €15 / £13 students and unwaged

You can join or renew at:
www.childrensresearchnetwork.org

The Network is supported by The Atlantic Philanthropies.
Children’s Research Network for Ireland and Northern Ireland

Supporting the research community in Ireland and Northern Ireland to better understand and improve the lives of children and young people

childrensresearchnetwork.org

This publication is supported by the Atlantic Philanthropies